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Abstract

We consider a spatial autoregressive model with heterogeneous coefficients associated with
different type of agents, and develop two different Lagrange multiplier tests, for existence of
spatial correlation and the heterogeneity of spatial correlation. With proper assumptions, the
two test statistics both have nice asymptotic distributions. For relatively small sample, Monte
Carlo simulations show good performance when using asymptotic critical values. Especially,
when only part of the individuals are affected by their neighbors, our test for existence of
spatial correlation is much more sensitive than the Moran I test. In our empirical application,
we investigate the short-run relationship between city size and housing price in northeastern
US. From 2006 to 2014, both direct city size effect and neighborhood spillovers to large city
areas are dynamic which are potentially driven by credit cycle and heterogeneity among regional
income distribution.

1 Introduction

In spatial econometrics and statistics, to test the existence of spatial correlation is one of the core
problem. The most popular and widely used test is Moran I test which is given by Moran (1950)
and Cliff and Ord (1973). In Kelejian and Prucha (2001), the asymptotic property of the Moran I
statistic has been investigated in a spatial autoregressive setting. Under some particular regularity
conditions for the spatial correlations, the Moran I test statistic is asymptotically Normal.

However, traditional spatial econometrics model, such like spatial autoregressive model, does not
consider the heterogeneity across individuals and the induced heterogeneity among their interactions
with neighbors. Consequently, as a benchmark test, Moran I may not suitable for this scenario.
In recent econometrics literature, there are some researchers begin to introduce heterogeneous
coefficient into spatial models, e.g. LaSage and Chih (2016), LaSage, Vance and Chih (2017). Not
only theoretical interesting, but also empirically, heterogeneous social network and spillover effect is
also an import question in many areas. For example, Matvos and Ostrovsky (2010) try to investigate
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the heterogeneity and peer effects in mutual fund proxy voting, Yakusheva, Kapinos and Eisenberg
(2014) and Patacchini, Rainone and Zenou (2017) try to investigate heterogeneous peer effect in
students’ behaviors and education. To incorporate with the growing interest in empirical research,
it is necessary to develop suitable tests as a replacement of Moran I, as well as distinguishing with
the traditional homogeneous situation. For spatial econometrics, a pre-estimation test is even more
important since the computational burden is increasing fast as the sample size increases. Even for
implement the traditional SAR model by maximum likelihood approach, as we need to optimize a
nonlinear function with inverse of n×n matrix, in large sample applications such as individual level
social network with more than 10,000 people, the optimization may take several hours or even days
to get the estimator. The heterogeneous case makes it even worse. Thus, pre-estimation test is a
good way to determine which model you should use and save valuable time on waiting for results.

In this paper, we develop two Lagrange multiplier tests based on a heterogeneous coefficient
spatial autoregressive model formation. One is constructed by least square estimator without the
spatial autoregression term, to test the existence of spatial correlation. The other one is constructed
by QMLE of SAR model, to test whether the heterogeneity exits in the spatial autocorrelation term.
The asymptotic Normality of the test statistics is also proved with Monte Carlo simulation study
for finite sample performance. We also provide an empirical example about housing market is given.
By investing the housing market in north eastern US from 2006 to 2014, we found a time-varying
correlation between city size and housing price, as well as the externality from neighbor areas
received. The credit cycle have different impacts to people with different income level, which is a
source of the size heterogeneity on housing markets due to the uneven geographic distribution of
income. By comparing with post-estimation tests, our tests work well as a pre-estimation benchmark
for heterogeneous spatial correlations.

In the following part of this paper, Section 2 is a brief introduction to heterogeneous coefficient
spatial autoregressive model. Section 3 is the LM test for existence of spatial correlation. Section
4 is the LM test for heterogeneity among the spatial correlation. Section 5 shows Monte Carlo
simulation results of test performance for finite samples, besides some comparisons with Moran I
test. Finally, an application is given in Section 6.

2 Heterogeneous Coefficient Spatial Autoregressive Model

2.1 Data Generating Process

Suppose n individual spatial unites in an economy are located in a region Dn ⊂ Rd , where the
cardinality of Dn is |Dn| = n. For convenience, we name these n units as 1, 2, · · · , n. The distance
between individuals i and j is denotes by dij . For regularity, we need the following assumption:

Assumption 1:
dij ≥ 1 for any i 6= j.
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Assumption 2:
There are K sub-regions

{
Dk
n

}K
k=1

inside Dn, which satisfy ∪kk=1D
k
n = Dn and Di

n ∩ Dj
n = 0

for i 6= j. K is a constant which does not depend on n.

Here
{
Dk
n

}K
k=1

may not be consecutive, which means the individuals inside each Dm
n may have

no correlation between each other. For example, in urban economics setting, we may divide counties
into metropolitan and micropolitan areas. Another common example in international trade might
be developing countries and developed countries. Thus, the sub-regions are divided by different
categories of individuals.

The data generating process is the following:

yi =

K∑
k=1

λkhi,k

 n∑
j=1

wij,nyj

+ x
′

iβ + ui (1)

where hi.k =

1 i ∈ Dk
n

0 i /∈ Dk
n

and ui
iid∼
(
0, σ2

)
. λk captures the spill-over effect from neighbors for

individual i ∈ Dk
n, and β captures effects from external regressors xi. Since hi,k is a dummy variable,

hi,k

(∑n
j=1 wij,nyj

)
captures the cross-effect of dummy and neighbor regions.

DenoteWn = (wij,n)n×n, yn = (y1,n, · · · , yn,n)
′
,Hn,k = diag (d1,k, · · · , dn,k),Xn =

(
x
′

1, · · · , x
′

n

)′
,

un = (u1, · · · , un)
′
, then our model can be written as the following matrix form:

yn =

K∑
k=1

λkHn,kWnyn +Xnβ + un (2)

Easy to see, when λk’s are equal, then it reduces to a mixed SAR model since
∑K
k=1Hn,kWn = Wn.

2.2 Economic Foundation

Similar to the SAR model, when introducing categorical heterogeneity, it can still be motivated
by game theory. It can be regarded as a model on the Nash equilibrium of a static complete
information game of different types of players processing with linear-quadratic utilities. Suppose
there are nindividuals, and they choose their actions to maximize their utilities and there are K
types of individuals. Let the action for individual iwith type k be yni, and its cost equals to y2in

2 .
Suppose individual i’s benefit from his action is promotional to his action, and it depends on his
characteristics, his type and other individuals’ action: yni

(
λk
∑n
j=1 wij,nynj + xniβ + uni

)
, which

can be substitute or complementary depending on the sign of λk. Then his utility is

ui (yni) = yni

λk n∑
j=1

wij,nynj + xniβ + vni

− y2
ni

2
(3)

where Y−i,n = (yni, · · · , yn,i−1, yn,i+1, · · · , yn,n)
′
, xni and vni are known to all individuals. An

individual imaximizes utility with respect to yni :
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max
yni

Ui (yni|Y−i,n)

where Ui (yni|Y−i,n) = u (yni). The optimal action for i will be characterized by the optimization of
his utility with yni. When the system of equations has a solution, the solution is a Nash equilibrium
of this game.

We can also motivate this model by a social interaction setting, where one may have a private
and social components in utility:

ui (yni) = yni (xniβ + vni)−
1

2

yni − λk n∑
j=1

wij,nynj

2

(4)

where the first component represents private utility associated with an action yni and the second
component captures a conformity effect with friends. Unlike the SAR situation in Brock and Durlauf
(2001), the conformity effect does depend on the type of i itself. For example, when considering
risk spread through mortgages, rich people and poor people will have different financial behaviors
with their friends and families due to their budget constraints. Another example, when considering
Covid-19 spread, well-educated people and less-educated people may have different responds on
surrounding peoples’ protection behaviors, e.g. wearing masks and washing hands, so the situation
of rich and poor community may have totally distinct infection rate, mortality rate and economic
impact. Gender may also be an important source of heterogeneity. Both (3) and (4) type of utilities
would give the heterogenous coefficient spatial autoregressive model (HSAR).

2.3 Likelihood Function and First Order Conditions

Rewrite (2) into as
(
In −

∑K
k=1 λkHn,kWn

)
yn = Xnβ + un, when

(
In −

∑K
k=1 λkHn,kWn

)−1

exists, we can transform the model into the following reduced form:

yn =

(
In −

K∑
k=1

λkHn,kWn

)−1

(Xnβ + un)

Then, similar to traditional SAR model, we can write down the log-likelihood function of yn when
un ∼ N

(
0, σ2In

)
:

lnLn

(
Λ
′
, β, σ2

)
= −n

2
ln(2π)− n

2
lnσ2 + ln |Sn(Λ)|

− 1

2σ2
(Sn(Λ)yn −Xnβ)

′
(Sn(Λ)yn −Xnβ)

where Λ = (λ1, · · · , λk)
′
and Sn(Λ) = In −

∑K
k=1 λkHn,kWn.

As (Hn,kWn)ij =

wij i = k

0 i 6= k
, we have

∥∥∥∥∥
K∑
k=1

λkHn,kWn

∥∥∥∥∥
∞

≤ max
k
|λk| ‖Wn‖∞

4



Thus, a possible parameter space of λ would be maxk |λk| < 1
‖Wn‖∞

, when ‖Wn‖∞ < ∞ is the
row-sum norm for Wn.

The first order conditions are

∂ lnLn (θ)

∂λk
= − 1

σ2
(Sn (Λ) yn −Xnβ)

′ ∂Sn (Λ)

∂λk
yn + tr

(
S−1
n (Λ)

∂Sn (Λ)

∂λk

)
=

1

σ2
[Sn (Λ) yn −Xnβ]

′
Hn,kWnyn − tr

[
S−1
n (Λ)Hn,kWn

]
∂ lnLn (θ)

∂β′
=

1

σ2
X
′

n (Sn (Λ) yn −Xnβ)

∂ lnLn (θ)

∂σ2
= − n

2σ2
+

1

2 (σ2)
2 (Sn(Λ)yn −Xnβ)

′
(Sn(Λ)yn −Xnβ)

where θ =
(

Λ
′
, β, σ2

)′
. Based on the first order conditions, we can construct different tests for

different purposes.

3 Test for Existence of Spatial Correlation

3.1 Construct the LM statistic

To construct LM tests and discuss the asymptotic distribution, we need to put some basic regularity
assumptions first.

Assumption 3:

For ∀k = 1, · · · ,K, we have limn→∞
|Dk

n|
n = ck where ck is a non-zero positive constant and∑K

k=1 ck = 1, i.e. there exist a stationary distribution of types as n→∞ and the probability of each
type would not shrink to zero.

Assumption 4:
{ui,n}i∈Dn

are i.i.d with mean zero and variance σ2. Its moment E
(
|u|4+γ

)
for some γ > 0

exits.

Assumption 5:
wij,n are at most of order h−1

n , denoted by O (1/hn) uniformly in all i and j, i.e. for some real
constant c, there exists a finite integer N , such that for all n ≥ N , |hnwij,n| < c for all i and j.
The rate sequence {hn} can be bounded or divergent. As a normalization, wii,n = 0.

Assumption 6:
The ratio hn/n→ 0 as n→∞.

Assumption 7:
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The matrix Sn is nonsingular.

Assumption 8:
The sequences of matrices {Wn} and

{
S−1
n (Λ0)

}
are uniformly bounded in both row and column

sums.

Assumption 9:
The elements of Xn are uniformly bounded constants for all n. The limn→∞

1
nX

′

nXn exists and
is nonsingular.

Assumption 10:{
S−1
n (Λ)

}
are uniformly bounded in either row or column sums, uniformly in λ in a compact

parameter space Θ. The true λ0 is in the interior of Θ.

Assumption 3 is a regularity assumption for the heterogeneity structure. If there is no stationary
limiting distribution of different types, our discussion for asymptotic situation will be meaningless
which will be showed in detail later. Also, we require Assumption 4-10 are similar to Assumption
1-7 in Lee (2004) which established the asymptotic theory for MLE and QMLE for SAR model,
despite λ is a vector instead of a scalar. So, the form of Sn (λ) also changed a little bit as defined
in Section 2.3. The parameter space Λ can be the one we discussed before. Detailed interpretation
of these assumptions is in Section 2 of Lee (2004). Additional regularity conditions will be showed
subsequently when needed.

With considering heterogeneity, traditional Moran I test may not work well since it assume
homogeneous correlation among different types of regions. To test whether there exist spatial
correlation, we need to test whether all the types of regions are affected by neighbors. Thus, we
need to test H0 : λk = 0 for ∀k = 1, · · · ,K. The alternative becomes H1 : ∃k, λk 6= 0. Under
H0, the HSAR model becomes a linear regression model, thus least square estimator and MLE are
consistent and

√
n−convergence. The first order derivatives become

∂ lnLn
(
0, β, σ2

)
∂λk

=
1

σ2
(yn −Xnβ)

′
Hn,kWnyn − tr (HkWn)

=
1

σ2
(yn −Xnβ)

′
Hn,kWnyn

∂ lnLn
(
0, β, σ2

)
∂β′

=
1

σ2
X
′

n (yn −Xnβ)

∂ lnLn
(
0, β, σ2

)
∂σ2

= − n

2σ2
+

1

2 (σ2)
2 (yn −Xnβ)

′
(yn −Xnβ)

Let θ̂ =
(

0, β̂
′
, σ̂2
)′

be the MLE of linear regression model, we should have
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∂ lnLn

(
θ̂
)

∂λk
=

1

σ̂2

(
yn −Xnβ̂

)′
Hn,kWnyn =

1

σ̂2
û
′
Hn,kWnyn

∂ lnLn

(
θ̂
)

∂β′
=

1

σ̂2
X
′

n

(
yn −Xnβ̂

)
=

1

σ̂2
X
′

nûn

∂ lnLn

(
θ̂
)

∂σ2
= − n

2σ̂2
+

1

2 (σ̂2)
2

(
yn −Xnβ̂

)′ (
yn −Xnβ̂

)
= − n

2σ̂2
+

1

2 (σ̂2)
2 û
′

nûn

Since
∂ lnLn(θ̂)

∂β = 0 and
∂ lnLn(θ̂)

∂σ2 = 0, we have σ2 = 1
n û
′
û and X

′

nû = 0. Then to test H0, we
need to focus on the following score functions:

gk,n

(
θ̂
)
≡
∂ lnLn

(
θ̂
)

∂λk
=

1

σ̂2
û
′

nHn,kWnyn

Next, we will use these score functions to construct an LM test statistic. From the FOCs derived
in Section 2.3, we can easily get the second order conditions:

∂2 lnLn (θ)

∂λ2
k

= − 1

σ2
(Hn,kWnyn)

′
Hn,kWnyn − tr

[(
Sn (λ)

−1
Hn,kWn

)2
]

∂2 lnLn (θ)

∂λh∂λk
= − 1

σ2
(Hn,lWnyn)

′
Hn,kWnyn

− tr
[
Sn (λ)

−1
Hn,lWnSn (λ)

−1
Hn,kWn

]
= −tr

[
Sn (λ)

−1
Hn,lWnSn (λ)

−1
Hn,kWn

]
∂2 lnLn (θ)

∂β′∂λk
= − 1

σ2
X
′

nHn,kWnyn

∂2 lnLn (θ)

∂σ2∂λk
= − 1

(σ2)
2 (Sn (λ) yn −Xnβ)

′
Hn,kWnyn

∂2 lnLn (θ)

∂β′∂β
= − 1

σ2
X
′

nXn

∂2 lnLn (θ)

∂σ2∂β
= − 1

(σ2)
2X

′

n (Sn (λ) yn −Xnβ)

∂2 lnLn (θ)

∂ (σ2)
2 =

n

2 (σ2)
2 −

1

(σ2)
3 (Sn(λ)yn −Xnβ)

′
(Sn(λ)yn −Xnβ)

since HlHk = 0 for ∀l 6= k and ∂S−1
n (Λ)
∂λk

= −S−1
n (Λ) ∂Sn(Λ)

∂λk
S−1
n (Λ). Under H0, from the first order
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condition, we also have
∂2 lnLn(θ̂)
∂σ2∂β = − 1

(σ̂2)2
X
′

n

(
yn −Xnβ̂

)
= 0. As Hk’s are idempotent, the

remained non-zero terms in Hessian matrices are

∂2 lnLn

(
θ̂
)

∂λ2
k

= − 1

σ̂2
y
′

nW
′

nHn,kWnyn − tr
[
(Hn,kWn)

2
]

∂2 lnLn

(
θ̂
)

∂λh∂λk
= −tr (Hn,lWnHn,kWn)

∂2 lnLn

(
θ̂
)

∂β′∂λk
= − 1

σ̂2
X
′

nHn,kWnyn

∂2 lnLn

(
θ̂
)

∂σ2∂λk
= − 1

(σ2)
2 û
′

nHn,kWnyn

∂2 lnLn

(
θ̂
)

∂β′∂β
= − 1

σ̂2
X
′

nXn

∂2 lnLn

(
θ̂
)

∂ (σ̂2)
2 =

n

2 (σ̂2)
2 −

1

(σ̂2)
3 û
′

nûn

By likelihood equation Eθ
(
∂2 lnLn(θ)

∂θ∂θ′

)
+Eθ

(
∂ lnLn(θ)

∂θ
∂ lnLn(θ)

∂θ′

)
= 0, as MLE of linear regression

model is
√
n− convergence, we can construct the following LM statistic to test H0:

LM1 = −gn
(
θ̂
)′
E

∂2 lnLn

(
θ̂
)

∂θ∂θ′

−1

gn

(
θ̂
)

(5)

where gn
(
θ̂
)

=
∂ lnLn(θ̂)

∂θ =
(
g1,n

(
θ̂
)
, · · · , gK,n

(
θ̂
)
, 0, · · · , 0

)′
with FOCs for parameters other

than λk are zeros. In the next section, we will derive the asymptotic distribution of LM1.

3.2 Asymptotic Distribution of LM1

To derive the asymptotic distribution of LM1, we need to derive the asymptotic distribution of the
score function gn

(
θ̂
)
. Let a = (a1, · · · , aK)

′
be an arbitrary vector of real numbers, then we have

fn

(
a, θ̂
)

=

K∑
k=1

akgn

(
θ̂
)

=

K∑
k=1

ak
1

σ̂2
û
′

nHn,kWnyn =
1

σ̂2
û
′

nHa,nWnyn

where Ha,n =
∑K
k=1 akHn,k which is a diagonal matrix with diagonal elements ha,n,ii = ak for

i ∈ Dk
n. Next, we will prove the asymptotic Normality of 1√

n
fn which implies jointly asymptotic

Normality of 1√
n
gn

(
θ̂
)
despite the trivial cases when a = 0.
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Since ûn =

[
I −Xn

(
X
′

nXn

)−1

Xn

]
un ≡Mnun, yn = Xnβ0 + un, we have

û
′

nHa,nWnyn = u
′

nMnHa,nWn (Xnβ0 + un)

= u
′

nMnHa,nWnXnβ0 + u
′

nMnHa,nWnun

= u
′

nHa,nWnXnβ0 + u
′

nXn

(
X
′

nXn

)−1

X
′

nHa,nWnXnβ0

+ u
′

nHa,nWnun + u
′

nXn

(
X
′

nXn

)
X
′

nHa,nWnun (6)

For each a, denote W̃n (a) = Ha,nWn, then each element w̃a,n,ij = akwij,n for for i ∈ Dk
n. Thus,

For a given real vector a, w̃a,n,ij are also O (1/hn) uniformly for all i and j follows Assumption
5 since ais a finite vector.

{
W̃n (a)

}
is also uniformly bounded in row and column sums follows

Assumption 8.

To continue our discussion, we need the following additional assumption:

Assumption 11:
For each a, limn→∞

1
n (Ha,nWnXnβ0)

′
Ha,nWnXnβ0 exists.

By Assumption 9 and 11, we have

1√
n
u
′

nXn

(
X
′

nXn

)−1

X
′

nHa,nWnXnβ0

=
u
′

nXn

n

(
X
′

nXn

n

)−1
1√
n
X
′

nHa,nWnXnβ0

=op(1)

and

1√
n
u
′

nXn

(
X
′

nXn

)−1

X
′

nHa,nWnun

=
u
′

nXn

n

(
X
′

nXn

n

)−1

XnHa,nWn
1√
n
un

=op (1)

Thus from equation (6), we have
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1√
n
fn

(
a, θ̂
)

=
1

σ̂2
√
n

[(
W̃n (a)Xnβ0

)′
un + u

′

nW̃n (a)Xnun

]
+ op (1)

≡ 1

σ̂2
√
n

(
A
′

nun + u
′

nBnun

)
+ op (1) (7)

where An (a) = W̃n (a)Xnβ0 and Bn (a) = 1
2

[
W̃n (a) + W̃

′

n (a)
]
. Since σ̂2 p→ σ2, by Slutsky’s

theorem, the remaining work is to discuss the limiting distribution of the following linear-quadratic
form:

Qn

(
a, θ̂
)

= A
′

nun + u
′

nBnun

By Assumption 5, there might be two cases: {hn} is bounded or limn→∞ hn =∞. When {hn}
is bounded, by Assumption 8 and Assumption 9, An and Bn are also uniformly bounded in column
and row sum. Thus, by Assumption 4, we can apply central limit theorem for linear-quadratic
forms in Kelejian and Prucha (2001) on Qn

(
a, θ̂
)
, and get

Qn

(
a, θ̂
)
− E

[
Qn

(
a, θ̂
)]

σQn

d→ N (0, 1)

where σQn
is the variance of Qn

(
a, θ̂
)
. This result will imply asymptotic Normality of 1√

n
fn

(
a, θ̂
)
.

When limn→∞ hn = ∞, 1√
n
A
′

nun will dominate 1√
n
u
′

nBnun by Assumption 11. As w̃a,n,ij are
also O (1/hn) as we proved before, we have

var

(
1√
n
u
′

nBnun

)
= o

(
1

hn

)
⇒ 1√

n
u
′

nBnun = op (1)

Simultaneously, we have 1√
n
A
′

nun = Op (1). Thus, by applying Lyapunov CLT’s central limit

theorem on 1√
n
A
′

nun , we can also get the asymptotic Normality of 1√
n
fn

(
a, θ̂
)
. As ais an arbitrary

real vector, we can get the jointly asymptotic Normality of 1√
n
gn

(
θ̂
)
.

Since we haveK constraints, we should haveK degree of freedom. However, without Assumption
3, we may have degenerate issue in some cases. Let’s focus on the situation when limn→∞ hn =∞.
Easy to see, there are only

∣∣Dk
n

∣∣ non-zero terms in vector Ha,nWnXnβ0 and each term is O (n/hn)

by Assumption 5 and 9. WLOG, reorder the observations and let Hn,k =

[
Ik 0

0 0

]
. Then, we

have

1√
n
u
′

nHa,nWnXnβ0 =

√
|Dk

n|
n

1√
|Dk

n|

|Dk
n|∑

i=1

(Ha,nWnXnβ0)i,n ui,n

If limn→∞
|Dn,k|
n = 0, then we will have 1√

n
u
′

nHa,nWnXnβ0
p→ 0, its no longer Op (1). Also, if

limn→∞
|Dn,k|
n = 0 does not exist, then the limiting distribution of 1√

n
u
′

nHa,nWnXnβ0 also does
not exist. Then, as we stated before, when limn→∞ hn =∞, this term will dominate the asymptotic
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distribution of 1√
n
gk,n

(
θ̂
)
, we will either have degenerate issue or diverge issue. Thus, Assumption

3 is necessary to regulate our model and make sure each score function have proper asymptotic
distribution. With all above assumptions hold, we can get that

LM1 = −gn
(
θ̂
)′
E

∂2 lnLn

(
θ̂
)

∂θ∂θ′

−1

gn

(
θ̂
)

d→ χ2 (K)

4 Test for Heterogeneity among Spatial Correlation

4.1 Construct the LM statistic

Besides the existence of the spatial heterogeneity, we are also interested in whether the heterogeneity
exist among the spatial correlation. Thus, we want test H0 : ρ1 = · · · = ρK , and the alternative
is H1 : ρi 6= ρj ,∃i 6= j. If H0 is true, then the HSAR is reduced to a SAR model. Lee (2004)
had proved the consistency and asymptotic Normality of QMLE of SAR. Here we just consider the
regular mixed regression case discussed Section 3 in Lee (2004) without including WnXn term into
the regression. To make sure the QMLE of SAR exist, we need the following assumption:

Assumption 12:
The limn→∞

1
n (Xn, GnXnβ0)

′
(Xn, GnXnβ0) exists and is non-singular.

where Gn = WnS
−1
n (Λ0) and Λ0 =

λ0, · · · , λ0︸ ︷︷ ︸
K


′

. λ0 is the true parameter of the SAR model.

This assumption makes sure GnXnβ0 and Xn are not asymptotically multi-collinear, and it is a

sufficient condition for global identification for the SAR model. Let θ̄ =
(

Λ̄
′
, β̄
′
, σ̄2
)′

be the con-

strained estimator of HSAR under H0, where
(
λ̄, β̄, σ̄2

)
is the QMLE for SAR and Λ̄ =

λ̄, · · · , λ̄︸ ︷︷ ︸
K


′

. Under Assumption 1-10 and 12, QMLE of SAR is consistent and
√
n− convergence.

Then, we have

∂ lnLn
(
θ̄
)

∂λk
=

1

σ̄2

[
Sn
(
Λ̄
)
yn −Xnβ̄

]′
Hn,kWnyn − tr

[
S−1
n

(
Λ̄
)
Hn,kWn

]
=

1

σ̄2
ū
′

nHn,kWnyn − tr
[(
In − λ̄Wn

)−1
Hn,kWn

]
∂ lnLn

(
θ̄
)

∂β′
=

1

σ̄2
X
′

nūn

11



∂ lnLn
(
θ̄
)

∂σ2
= − n

2σ̄2
+

1

2 (σ̄2)
2 ū
′

nūn

Clearly,
∂ lnLn(θ̄)

∂β = 0 and
∂ lnLn(θ̄)

∂σ2 underH0, then we need to focus on the following score functions:

hk,n
(
θ̄
)

=
∂ lnLn

(
θ̄
)

∂λk
=

1

σ̄2
ū
′

nHn,kWnyn − tr
[(
In − λ̄Wn

)−1
Hn,kWn

]
Also, for the second order derivatives, we have the following non-zero terms:

∂2 lnLn
(
θ̄
)

∂λ2
k

= − 1

σ̄2
(Hn,kWnyn)

′
Hn,kWnyn − tr

[((
In − λ̄Wn

)−1
Hn,kWn

)2
]

∂2 lnLn
(
θ̄
)

∂λh∂λk
= −tr

[(
In − λ̄Wn

)−1
Hn,lWn

(
In − λ̄Wn

)−1
Hn,kWn

]
∂2 lnLn (θ)

∂β′∂λk
= − 1

σ̄2
X
′

nHn,kWnyn

∂2 lnLn (θ)

∂σ2∂λk
= − 1

(σ̄2)
2 ū
′

nHn,kWnyn

∂2 lnLn (θ)

∂β′∂β
= − 1

σ̄2
X
′

nXn

∂2 lnLn (θ)

∂ (σ2)
2 =

n

2 (σ̄2)
2 −

1

(σ̄2)
3 ū
′

nūn

By likelihood equation Eθ
(
∂2 lnLn(θ)

∂θ∂θ′

)
+ Eθ

(
∂ lnLn(θ)

∂θ
∂ lnLn(θ)

∂θ′

)
= 0, as QMLE of SAR model

is
√
n− convergence, we can construct the following LM statistic to test H0:

LM2 = −hn
(
θ̄
)′
E

(
∂2 lnLn

(
θ̄
)

∂θ∂θ′

)−1

hn
(
θ̄
)

(8)

where hn
(
θ̄
)

=
∂ lnLn(θ̄)

∂θ =
(
h1,n

(
θ̄
)
, · · · , hK,n

(
θ̄
)
, 0, · · · , 0

)′
with FOCs for parameters other

than λk are zeros. In the next section, we will derive the asymptotic distribution of LM2.

4.2 Asymptotic Distribution of LM2

Similar to Section 3.2, we consider to derive the asymptotic distribution of linear combination of
the score functions:
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ξn
(
a, θ̄
)

=a
′
hn
(
θ̄
)

=− 1

σ̄2
ū
′

n

(
K∑
k=1

akHn,k

)
Wnyntr

[(
In − λ̄Wn

)−1

(
K∑
k=1

akHn,k

)
Wn

]

=
1

σ̄2
ū
′

nHa,nWnyn − tr
[(
In − λ̄Wn

)−1
Ha,nWn

]
Since yn = Sn (λ0)

−1
(Xnβ0 + un) and ūn = Sn

(
λ̄
)
yn −Xnβ̄, the following term in ξn can be

decomposed as

ū
′

nHa,nWnyn

=
[
Sn
(
λ̄
)
yn −Xnβ̄

]′
Ha,nWnSn (λ0)

−1
(Xnβ0 + un)

=y
′

nS
′

n

(
λ̄
)
Ha,nWnSn (λ0)

−1
Xnβ0 + y

′

nS
′

n

(
λ̄
)
Ha,nWnSn (λ0)

−1
un

−β̄
′
X
′

nHa,nWnSn (λ0)
−1
Xnβ0 − β̄

′
X
′

nHa,nWnSn (λ0)
−1
un

=
[
Sn (λ0)

−1
(Xnβ0 + un)

]′
S
′

n

(
λ̄
)
Ha,nWnSn (λ0)

−1
Xnβ0

+
[
Sn (λ0)

−1
(Xnβ0 + un)

]′
Ha,nWnSn (λ0)

−1
un

−β̄
′
X
′

nHa,nWnSn (λ0)
−1
Xnβ0 − β̄

′
X
′

nHa,nWnSn (λ0)
−1
un

=β
′

0X
′

nS
′

n (λ0)
−1
S
′

n

(
λ̄
)
Ha,nWnSn (λ0)

−1
Xnβ0

+u
′

nS
′

n (λ0)
−1
S
′

n

(
λ̄
)
Ha,nWnSn (λ0)

−1
Xnβ0

+β
′

0X
′

nS
′

n (λ0)
−1
Ha,nWnSn (λ0)

−1
un + u

′

nS
′

n (λ0)
−1
Ha,nWnSn (λ0)

−1
un

−β̄
′
X
′

nHa,nWnSn (λ0)
−1
Xnβ0 − β̄

′
X
′

nHa,nWnSn (λ0)
−1
un (9)

By continuous mapping theorem and Slutsky’s theorem, since θ̄ p→ θ0, we have

β
′

0X
′

nS
′

n (λ0)
−1
S
′

n

(
λ̄
)
Ha,nWnSn (λ0)

−1
Xnβ0

−β
′

0X
′

nHa,nWnSn (λ0)
−1
Xnβ0

p→ 0

and

β̄
′
X
′

nHa,nWnSn (λ0)
−1
Xnβ0

−β
′

0X
′

nHa,nWnSn (λ0)
−1
Xnβ0

p→ 0

Then, we have

β
′

0X
′

nS
′

n (λ0)
−1
S
′

n

(
λ̄
)
Ha,nWnSn (λ0)

−1
Xnβ0 − β̄

′
X
′

nHa,nWnSn (λ0)
−1
Xnβ0 = op (1)
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Denote the following matrices:

Cn
(
a, θ̄
)

= β
′

0X
′

nS
′

n (λ0)
−1
W
′

nHa,nSn
(
λ̄
)
Sn (λ0)

−1

+ β
′

0X
′

nS
′

n (λ0)
−1
Ha,nWnSn (λ0)

−1

− β̄
′
X
′

nHa,nWnSn (λ0)
−1

and

Dn (a) =
1

2
S
′

n (λ0)
−1
Ha,nWnSn (λ0)

−1

+
1

2
Sn (λ0)

−1
W
′

nHa,nS
′

n (λ0)
−1

Then, from (9), we can get the following result:

1√
n
ū
′

nHa,nWnyn =
1√
n

[
Cn
(
a, θ̄
)
un + u

′

nDn (a)un

]
+ op (1)

≡ 1√
n
Q̃n
(
a, θ̄
)

+ op (1)

Similar to Assumption 11, now we need the following assumption as an regulation:

Assumption 11’:
For any a, limn→∞

1
nD

′

n (a)Dn (a) exists.

Then, similar to the discussion in Section 3.2, for the two different situations {hn} is bounded or
limn→∞ hn = ∞, due to Assumption 4, 5, 8 and 9, we have the following result by different types
of CLTs:

Q̃n
(
a, θ̄
)
− E

[
Q̃n
(
a, θ̄
)]

σQ̃n

d→ N (0, 1)

where σQ̃n
is the variance of Q̃n

(
a, θ̄
)
.

Next, lets move to the term tr
[(
In − λ̄Wn

)−1
Ha,nWn

]
. As tr (ABC) = tr (BCA) = tr (CAB)

for any n× n matrix A,B and C, we have

∣∣∣tr [(In − λ̄Wn

)−1
Ha,nWn

]∣∣∣ =
∣∣∣tr [Ha,nWn

(
In − λ̄Wn

)−1
]∣∣∣

≤ max
k=1,···K

|ak|
∣∣∣tr (Wn

(
In − λ̄Wn

)−1
)∣∣∣

SinceWn and
(
In − λ̄Wn

)−1 are uniformly bounded in both column and row sum norm,Wn

(
In − λ̄Wn

)−1

is also uniformly bounded in both column and row sum norm, thus tr
(
Wn

(
In − λ̄Wn

)−1
)

= Op (1).
Then,
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1√
n
ξn
(
a, θ̄
)

=
1

σ̂2

1√
n
Q̃n
(
a, θ̄
)

+ op (1)

is asymptotically Normal. Thus, 1√
n
hn
(
θ̄
)
is jointly asymptotic Normal. With Assumption 3, by

similar argument as in Section 2.3, each term in 1√
n
hn
(
θ̄
)
is not degenerate.

Since we have (K − 1) equation constraints in H0 : ρ1 = · · · = ρK , the degree of freedom of
LM2 should be (K − 1). In fact, we have

K∑
k=1

hk,n
(
θ̄
)

=

K∑
k=1

{
1

σ̄2
ū
′

nHn,kWnyn − tr
[(
In − λ̄Wn

)−1
Hn,kWn

]}
=

1

σ̄2
ū
′

nWnyn − tr
[(
In − λ̄Wn

)−1
Wn

]
= 0

since it equals to the first order condition of MLE of SAR model. Thus, we have

LM2 = −hn
(
θ̄
)′
E

(
∂2 lnLn

(
θ̄
)

∂θ∂θ′

)−1

hn
(
θ̄
) d→ χ2 (K − 1)

5 Monte Carlo Simulations

5.1 Basic Settings

In this section, we try to do Monte Carlo simulations to see whether the test we derived in Section
3 and 4 work well. And then, we will show the performance of the unconventional LM statistics.
For each test statistic, we will evaluate its performance by three indicators: 1. test size under H0;
2. test power under H1 ; 3. simulated critical values. All these three indicators will be showed for
α = 10%, α = 5% and α = 1%.

To simulate the SAR and spatial log-ARCH like model, we need to first simulate the spatial
correlations among regions which satisfy our Assumption 1, 2, 5 and 6. Here we construct the
row-stochastic nearest neighbor spatial weight matrix Wn = (wij,n) using LeSage’s econometrics
toolbox. The procedure is:

1. Generate two random vectors of coordinates as the geographic location for each observation;
2. Find l nearest neighbors for each observation according to their spatial distances and denote the
corresponding wij,n = 1, otherwise wij,n = 0;
3. Row-normalize Wn.
We will consider two different situations when l = 5 and l = 10.

In our simulation exercises, there are three different DGP we need to consider:

DGP 1: Linear Regression Model
yn = Xnβ + un, un ∼

(
0, σ2In

)
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DGP 2: Spatial Autoregressive Model
yn = λWn +Xnβ + un, , un ∼

(
0, σ2In

)
DGP 3: Heterogeneous Coefficient Spatial Autoregressive Model

yn =

K∑
k=1

λkHn,kWnyn +Xnβ + un, , un ∼
(
0, σ2In

)
From DGP 1 to 4, for external regressor xi,n, we consider a two regressors case: xi,n = (x1,i,n, x2,i,n)

′

where x1,i,n is the intercept and x2,i,n
iid∼ N (0, 1). Also, we consider the following two parameter

setting for β and σ2 :
(
β
′
, σ2
)

= [(1, 1) , 4] and
(
β
′
, σ2
)

= [(2,−5) , 1] in DGP 1 and DGP 2.
For the SAR coefficient in DGP 2, we use ρ = 0.5 and ρ = −0.4. Each round of simulation with
different number of regions and parameter settings will be replicated for 1,000 times. In the next
two sessions, we will show the performance of LM1 and LM2 separately.

5.2 Performance of LM1

By using DGP 1 and DGP 3, we can simulate the test size, power and critical values of LM1 in
Section 3 with finite samples. For the heterogeneity structure, we consider two-category case and
the ratio between the regions of these two categories are fixed at 4 : 1. To simulate the power, we
consider the the following two different alternatives: (λ1, λ2) = (0.5,−0.2) and (λ1, λ2) = (0, 0.4).
The first alternative is the situation when different types of regions or agents have distinct response
to neighbors, or are affected by neighbor’s spill-over effects differently. The second alternative is
the situation when only part of the regions or agents are affected by neighbors, while the others
may affect others but are not affected by others. Also, besides Normal distributed residuals, we
also consider re-centered Gamma distribution and uniform distribution, to see whether LM1 also
works for non-Normal case. The simulation results are showed in Table 1-3.

Table 1 shows the test size of LM1 when using χ2 (2) critical value at 5% significance level. For
all the three types of residuals, when sample size is small, it tends to over reject the true model but
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Table 1: Test Size of LM1 (χ2
0.95 (2) = 5.9915)

n neighbors residuals
(
β
′
, σ2
)

= [(1, 1) , 4]
(
β
′
, σ2
)

= [(2,−5) , 1]

100

l = 5

N
(
0, σ2

)
0.068 0.071

σ [Γ (2.25, 2)− 4.5] 0.072 0.073
σU
[
−
√

3,
√

3
]

0.067 0.061

l = 10

N
(
0, σ2

)
0.078 0.077

σ [Γ (2.25, 2)− 4.5] 0.057 0.071
σU
[
−
√

3,
√

3
]

0.073 0.066

200

l = 5

N
(
0, σ2

)
0.055 0.067

σ [Γ (2.25, 2)− 4.5] 0.074 0.054
σU
[
−
√

3,
√

3
]

0.057 0.058

l = 10

N
(
0, σ2

)
0.058 0.064

σ [Γ (2.25, 2)− 4.5] 0.054 0.059
σU
[
−
√

3,
√

3
]

0.067 0.054

400

l = 5

N
(
0, σ2

)
0.048 0.049

σ [Γ (2.25, 2)− 4.5] 0.050 0.048
σU
[
−
√

3,
√

3
]

0.056 0.048

l = 10

N
(
0, σ2

)
0.052 0.054

σ [Γ (2.25, 2)− 4.5] 0.053 0.062
σU
[
−
√

3,
√

3
]

0.051 0.057
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Table 2: Test Power of LM1 (χ2
0.95 (2) = 5.9915)

n neighbors residuals

(
λ1, λ2, β

′
, σ2
) (

λ1, λ2, β
′
, σ2
)

= [0.5,−0.2, (1, 1) , 4] = [0, 0.4, (2,−5) , 1]

100

l = 5

N
(
0, σ2

)
0.912 0.933

σ [Γ (2.25, 2)− 4.5] 0.730 0.437
σU
[
−
√

3,
√

3
]

0.931 0.996

l = 10

N
(
0, σ2

)
0.877 0.763

σ [Γ (2.25, 2)− 4.5] 0.526 0.395
σU
[
−
√

3,
√

3
]

0.830 0.997

200

l = 5

N
(
0, σ2

)
0.998 1

σ [Γ (2.25, 2)− 4.5] 0.955 0.776
σU
[
−
√

3,
√

3
]

0.995 1

l = 10

N
(
0, σ2

)
0.951 1

σ [Γ (2.25, 2)− 4.5] 1 0.547
σU
[
−
√

3,
√

3
]

0.964 1

400

l = 5

N
(
0, σ2

)
1 1

σ [Γ (2.25, 2)− 4.5] 1 0.985
σU
[
−
√

3,
√

3
]

1 1

l = 10

N
(
0, σ2

)
1 1

σ [Γ (2.25, 2)− 4.5] 0.964 0.726
σU
[
−
√

3,
√

3
]

0.999 1

Table 3: Simulated Critical Values of LM1 with Normal Residuals

n neighbors

(
β
′
, σ2
)

= [(1, 1) , 4]
(
β
′
, σ2
)

= [(2,−5) , 1]

0.1 0.05 0.01 0.1 0.05 0.01

100
l = 5 4.8871 6.5476 11.4063 5.3041 6.8218 11.1602
l = 10 5.4134 6.9741 10.4855 5.2785 6.9584 11.4887

200
l = 5 4.6411 5.6946 9.2097 5.1939 6.5236 9.7176
l = 10 4.8791 6.3121 8.7272 4.9353 6.4395 11.3451

400
l = 5 4.701 5.8109 9.3248 4.4700 5.9705 8.6374
l = 10 4.6101 6.1810 10.2791 4.7262 6.1095 9.3792
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not seriously. As the sample size goes larger, the test size will decrease and be around the theoretical
value 5%. From Table 3, we can see that the simulated critical values under Normal case is getting
close to the asymptotic critical values of χ2 (2), which are 4.6052, 5.9915 and 9.2103 for 90%, 95%
and 99% critical level. When residuals are Gamma or Uniform distributed, the simulated critical
values perform similar to the Normal case which are not showed here.

Table 3 shows the test power of LM1 for two different alternatives. The critical value used here
is also χ2 (2) critical value at 5% significance level. When residual is Normal, it is a powerful test.
Even with 100 observations, it rejects over 70% of alternatives. As sample size gets larger, the test
power goes to 1. When residuals are not Normal, the test power for small sample highly depends
on the residual distribution. For 5 neighbor cases, when residual is uniformly distributed, the test
power is as large as the Normal case. However, when residual is re-centered Gamma distribution,
the test power shrinks to around only 40% in some cases. When sample size is large, the test power
will increase and converge to 1, just like the Normal case.

Traditionally, Moran I test developed in Moran, Cliff and Ord (1973) is widely used to test
whether there exist spatial correlation, it does not work well in our heterogeneity setting, especially
for some situations. In Table 4, we show the test power of Moran I test of our Monte Carlo
simulation.

From Table 4, we can see Moran I test works very bad for the parameter setting
(
λ1, λ2, β

′
, σ2
)

=

[0, 0.4, (2,−5) , 1]. In this setting, 20% of the regions are affected by their neighbors, and the
remaining 80% of regions may still impact their neighbors but not affected by neighbors. Although
in this case, spatial correlation exists, the Moran I test can not reject the null hypothesis well.
Even with 400 observations, the simulated test power is only around 15%-25% which is too low.
As a comparison, in Table 2, we can see our LM1 has a much better performance on rejecting the
alternative models in this situation. Even with 100 observations, the test power for Normal and
uniform cases are higher than 90%, and it is about 40% for re-centered Gamma case which is low
but still way better than Moran I which is only less than 10%. For the other parameter setting,
Moran I works well but the test power are still less than our LM1. Thus, empirically, if there exist
categorical heterogeneity among regions, we suggest you to use our LM1 test instead of Moran I,
otherwise you may have a very large chance to falsely accept the null hypothesis and ignore the
spatial correlation among regions. Then, your estimators for external regressors will also be biased
by using linear regressions.
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Table 4: Test Power of Moran I (5% Significant Level)

n neighbors residuals

(
λ1, λ2, β

′
, σ2
) (

λ1, λ2, β
′
, σ2
)

= [0.5,−0.2, (1, 1) , 4] = [0, 0.4, (2,−5) , 1]

100

l = 5

N
(
0, σ2

)
0.724 0.055

σ [Γ (2.25, 2)− 4.5] 0.701 0.091
σU
[
−
√

3,
√

3
]

0.684 0.103

l = 10

N
(
0, σ2

)
0.442 0.085

σ [Γ (2.25, 2)− 4.5] 0.433 0.083
σU
[
−
√

3,
√

3
]

0.502 0.059

200

l = 5

N
(
0, σ2

)
0.906 0.177

σ [Γ (2.25, 2)− 4.5] 0.943 0.148
σU
[
−
√

3,
√

3
]

0.926 0.213

l = 10

N
(
0, σ2

)
0.972 0.132

σ [Γ (2.25, 2)− 4.5] 0.708 0.102
σU
[
−
√

3,
√

3
]

0.713 0.111

400

l = 5

N
(
0, σ2

)
0.998 0.176

σ [Γ (2.25, 2)− 4.5] 0.998 0.189
σU
[
−
√

3,
√

3
]

0.997 0.237

l = 10

N
(
0, σ2

)
0.960 0.193

σ [Γ (2.25, 2)− 4.5] 0.947 0.146
σU
[
−
√

3,
√

3
]

0.920 0.143
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Table 5: Test Size of LM2 (χ2
0.95 (2) = 5.9915)

n neighbors residuals

(
λ, β

′
, σ2
) (

λ, β
′
, σ2
)

= [0.5, (1, 1) , 4] = [−0.4, (2,−5) , 1]

100

l = 5

N
(
0, σ2

)
0.078 0.077

σ [Γ (2.25, 2)− 4.5] 0.112 0.054
σU
[
−
√

3,
√

3
]

0.067 0.080

l = 10

N
(
0, σ2

)
0.097 0.069

σ [Γ (2.25, 2)− 4.5] 0.093 0.058
σU
[
−
√

3,
√

3
]

0.070 0.071

200

l = 5

N
(
0, σ2

)
0.062 0.065

σ [Γ (2.25, 2)− 4.5] 0.095 0.067
σU
[
−
√

3,
√

3
]

0.060 0.057

l = 10

N
(
0, σ2

)
0.067 0.058

σ [Γ (2.25, 2)− 4.5] 0.085 0.057
σU
[
−
√

3,
√

3
]

0.045 0.059

400

l = 5

N
(
0, σ2

)
0.054 0.047

σ [Γ (2.25, 2)− 4.5] 0.082 0.050
σU
[
−
√

3,
√

3
]

0.056 0.049

l = 10

N
(
0, σ2

)
0.059 0.054

σ [Γ (2.25, 2)− 4.5] 0.077 0.049
σU
[
−
√

3,
√

3
]

0.048 0.048

5.3 Performance of LM2

By using DGP 2 and DGP 3, we can simulate the test size, power and critical values of LM2 in
Section 4 with finite samples. For the heterogeneity structure, we consider three-category case
and the ratio between the regions of different categories are fixed at 3 : 5 : 2. To simulate the
power, we consider the the following two different alternatives: (λ1, λ2, λ3) = (0.5,−0.2, 0.7) and
(λ1, λ2) = (0, 0.4, 0.1). Similar to Section 5.2, besides Normal distributed residuals, we also consider
re-centered Gamma distribution and uniform distribution, to see whether LM1 also works for non-
Normal case. The simulation results are showed in Table 5-7.
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Table 6: Test Power of LM2 (χ2
0.95 (2) = 5.9915)

n neighbors residuals

(
λ1, λ2, λ3, β

′
, σ2
) (

λ1, λ2, λ3, β
′
, σ2
)

= [0.5,−0.2, 0.7, (1, 1) , 4] = [0, 0.4, 0.1, (2,−5) , 1]

100

l = 5

N
(
0, σ2

)
0.790 0.921

σ [Γ (2.25, 2)− 4.5] 0.496 0.218
σU
[
−
√

3,
√

3
]

0.827 0.862

l = 10

N
(
0, σ2

)
0.834 0.673

σ [Γ (2.25, 2)− 4.5] 0.315 0.186
σU
[
−
√

3,
√

3
]

0.603 0.882

200

l = 5

N
(
0, σ2

)
0.971 0.989

σ [Γ (2.25, 2)− 4.5] 0.775 0.453
σU
[
−
√

3,
√

3
]

0.982 0.997

l = 10

N
(
0, σ2

)
0.946 0.931

σ [Γ (2.25, 2)− 4.5] 0.531 0.343
σU
[
−
√

3,
√

3
]

0.967 0.984

400

l = 5

N
(
0, σ2

)
1 1

σ [Γ (2.25, 2)− 4.5] 0.963 0.715
σU
[
−
√

3,
√

3
]

1 1

l = 10

N
(
0, σ2

)
0.999 0.998

σ [Γ (2.25, 2)− 4.5] 0.811 0.580
σU
[
−
√

3,
√

3
]

1 1

Table 7: Simulated Critical Values of LM2 with Normal Residuals

n neighbors

(
λ, β

′
, σ2
)

= [0.5, (1, 1) , 4]
(
λ, β

′
, σ2
)

= [−0.4, (2,−5) , 1]

0.1 0.05 0.01 0.1 0.05 0.01

100
l = 5 5.4320 7.2831 10.8773 5.3287 6.7644 10.0293
l = 10 5.8685 7.9904 11.6299 5.2176 7.1535 11.6175

200
l = 5 4.9169 6.2664 10.6303 4.9273 6.4021 10.2525
l = 10 5.0219 6.5657 10.2726 5.0179 6.3613 9.5738

400
l = 5 4.7358 6.1294 8.8924 4.8382 6.1149 9.4095
l = 10 4.7364 6.3350 9.7782 4.6703 6.1025 9.4557
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From Table 5-7, we can see the performance of LM2 is similar to LM1. With small sample, it
tend to over reject H0 when it is true. As sample size goes larger, the size and simulated critical
value are getting closer to asymptotic values. For the test power, it also increases along with sample
size. Another thing we should notice is that the performance when the residuals are re-centered
Gamma is significantly bad then the other two cases. A potential reason is that Γ (2.25, 2) is not
a symmetric distribution. Although QMLE for SAR model works well for distributions other than
Normal asymptotically, higher order information such like skewness and kurtosis may create bias
in small sample situation. In general, with more than 200 observations, it works well enough.

6 Application: City Size and Housing Market

6.1 Motivation and Data Description

City size is often discussed in the urban economics literatures. Many previous research had provided
empirical evidences that city size is a very important spatial demographical heterogeneity which has
large impact on regional economic development and labor market. Segal (1976) started to focus on
the impact of city size on productivity, and identified significant higher output per capita in large
cities due to returns to scale after controlling capital, labor and some other factors. Moomaw (1981)
extended results in Segal (1976) and found that productivity advantage of large cities are much
larger for the non-manufacturing sector than the manufacturing sector. Recent years, researchers
also focused on some other aspects of economic issues related to city size. Chritstoffersen and
Sarkissian (2009) observed performance improvements of the same equity fund manager at the
same fund in financial centers but not elsewhere, which is an evidence of knowledge spillovers in
large cities. Baum-Snow and Pavan (2012) focused on the significant wage premium in large cities
showed in 2010 Census and tried to explain it by a labor search model. Baum-Snow and Pavan
(2013) identified a strong positive monotonic relationship between wage inequality and city size from
late 1970s to early 2000s. Since local housing demand and supply are closely correlated with local
economic development, city size may have a large impact on housing market. Moreover, since the
industry and income distribution performs very different inside a large and small cities, the spatial
correlation of housing market inside each sub-regions of a large city may also by very different.
Financial risk correlated with the housing market and the derivative market generated by housing
mortgage may also closely affected by the city size, and have different spatial correlation structures
in large and small cities.

Due to our interest in large cities, we focus on Northeastern United States which has the largest
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Table 8: Summary Statistics of Annual Change of HPI (%) in Northeastern US
2006 2007 2008 2009 2010 2011 2012 2013 2014

Mean 7.09 2.07 -1.38 -4.45 -3.08 -2.28 -1.72 0.21 1.36
Minimum -4.15 -4.25 -9.5 -19.83 -11.91 -9.53 -8.34 -6.99 -6.08
Maximum 32.27 12.75 10.39 6.70 6.54 7.15 6.50 8.08 11.88

s.t.d 4.05 3.00 3.33 3.97 2.81 2.65 2.39 2.02 2.86

megalopolis in the world. Additionally, By Census Bureau’s definition, there are 9 states belongs to
this geographical concept: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New
York, Pennsylvania, Rhode Island and Vermont. Combined the definitions from Association of
American Geographers and Geographical Society of America, we also include Delaware, Maryland
and Washington, D.C. to our sample. So, totally we have Since the Metropolitan Statistical Areas
(MSA) and Combined Statistical Areas (CSA) are defined by United States Office of Management
and Budget (OMB) on a county basis, we also use county level data as our observations. From
Federal Housing Finance Agency (FHFA), we can access the annual house price indexes at county
level1. The annual percentage change of HPI is a good approximation of annual average housing
return in a county. Although the HPI does not perfectly match the return of housing market since
it counts total price, not price per sq.ft, as county is a relatively large area which contains different
types of houses, tradings in one year should be a good mixture of different types. Since this data
set is still under development, too old historical data and most recent data are not available for
some counties. Due to this issue, the sample period used in this paper is limited from 2006 to
2014. As this period contains the tail of the housing boom during early 2000s, and the global
financial crisis, it is a good time window for us to investigate how the city size plays a roll in
spatial risk spreading in housing market. Additionally, due to lack of trading data, 5 counties
including Sullivan County, PA (FIPS: 42113), Cameron County, PA(FIPS: 42023), Forest County,
PA (FIPS: 42053), Juniata County, PA (FIPS: 42067), and Hamilton County, NY (FIPS:36061),
are not included in the database. Population size of these 5 counties are very small, with less than
30,000 in Juniata county, PA and less than 10,000 in the other four. We can expect that the house
trading be inactive and not have significant impact on neighbor counties. Thus, totally we have 240
counties in our sample area. Summary statistics of the annual percentage change of HPI is showed
in Table 8. Also, we reported the summary statistics of annual real GDP growth in Table 9, which
are publicly accessible from Bureau of Economic Analysis (BEA) 2. In general, the housing price
and GDP growth had similar trends in the sample years, but the housing market recovered much
slower during the financial crisis.

1See https://www.fhfa.gov
2See https://www.bea.gov
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Table 9: Summary Statistics of Annual Real GDP Growth (%) in Northeastern US
2006 2007 2008 2009 2010 2011 2012 2013 2014

Mean 3.44 0.47 0.86 -1.26 3.13 0.50 0.39 0.90 1.53
Minimum -48.9 -22.2 -10.9 -19.1 -12.9 -10.4 -15.5 -8.7 -6
Maximum 19 14.1 30.7 30 29.3 20.4 30.8 24.4 37.2

s.t.d 4.97 3.92 3.83 4.30 4.06 3.45 3.59 3.47 4.61

To distinguish large cities and their neighbors, we use population size in 2010 census as the indi-
cator and both consider MSA and CSAs. The 240 counties in our sample belong to 53 MSAs defined
by OMB. In this paper, we consider the largest 10 MSAs with more than 1 million populations as
large city group. Additionally, we also consider their encompassing CSA which contains neighbor-
hood regions, including some smaller MSAs and Micropolitan Statistical Areas (μSA) (smaller town
areas with smaller population size). By definition from OMB, CSAs represent multiple metropoli-
tan or micropolitan areas that have an employment interchange of at least 15%, the counties inside
the CSA around a large MSA can be viewed together with the MSA as a integrated labor and
commodity market. Thus, in this paper, we consider a broader definition of a city, and identified
large city regions as the counties belongs to the encompassing CSAs listed in Table 103. In total,
there are 107 counties identified as large city regions.

From Table 11, although large cities and other areas had similar economic performance during
financial crisis, the situation of housing market was a totally different story. By grouping the cities,
in Table 11, we show the group average of their annual HPI change (%) and real GDP growth (%).
Referring to US business cycle identified by NBER4, the economic recession started at December
2007 and ended at June 2009. However, it took two more years for housing market to recover until
2013. More importantly, different regions had distinct performances. The housing market in the
large city areas have both relatively better performances during expansion and bad performances
during recession on average. In the next session, we will try to investigate the effect of city size on
housing market in detail.

3For the full list of MSA in the US and their population sizes in 2010 Census, see
https://en.wikipedia.org/wiki/List_of_metropolitan_statistical_areas

4See https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
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Table 10: MSAs in Northeastern US with >1 Million Population Size in 2010 Census

Rank MSA
2010 Census
Population

Encompassing
CSA

1

New York
City-Newark-
Jersey
City

18,897,109
New
York-Newark

2
Philadelphia-
Camden-
Wilmington

5,965,343
Philadelphia-
Reading-
Camden

3
Washington-
Arlington-
Alexandria

5,649,540
Washington-
Baltimore-
Arlington

4
Boston-
Cambridge-
Newton

4,552,402
Boston-
Worcester-
Providence

5
Baltimore-
Columbia-
Towson

2,710,489
Washington-
Baltimore-
Arlington

6
Pittsburgh,
PA MSA

2,356,285

Pittsburgh-
New
Castle-
Weirton

7
Providence-
Warwick

1,600,852
Boston-
Worcester-
Providence

8
Hartford-East
Hartford-
Middletown

1,212,381
Hartford-East
Hartford

9
Buffalo-
Niagara
Falls

1,135,509
Buffalo-
Cheektowaga-
Cattaraugus

10 Rochester 1,079,671

Rochester-
Batavia-
Seneca
Falls
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Table 11: Group Average of 4HPI (%) and 4GDP(%) in Northeastern US
2006 2007 2008 2009 2010 2011 2012 2013 2014

Large
4HPI (%) 7.10 0.57 -3.25 -6.24 -3.53 -3.17 -2.08 0.55 2.73
4GDP(%) 3.31 0.81 0.64 -1.49 2.68 0.32 0.78 0.44 0.82

Other
4HPI (%) 7.09 3.28 0.12 -3.01 -2.72 -1.56 -1.42 -0.07 0.27
4GDP(%) 3.55 0.21 1.03 -1.07 3.49 0.64 0.09 1.27 2.09

6.2 Empirical Strategy and Results

Due to our data set and purpose, although we have observations for several years, in this paper, we
will use cross-sectional regression for each year instead of panel models. On one hand, due to our
interest on large cities, we would like to identify the large city fixed effect. However, as the large
cities are time invariant in our sample periods, fixed effect can not identified in a panel model. On
the other hand, during the urban formation, housing price will influence the dynamic of industries
thus have an impact on the spatial distribution of population. In the long-run, the reverse effect of
housing price to city size is hard to be captured and controlled in a reduced form regression model
framework. Thus, to separately consider the effect of city size to housing price, using yearly time
window is a good choice. In such a short time period, the reverse effect of housing price to city
size would be negligible. More importantly, spatial panel model pre-assume persistent and time-
invariant spatial correlations, however for housing market, there might exist some time variant risk
spillovers across regions which highly correlated with the economic

To investigate the effect of city size to housing price, especially to the spatial correlation among
the housing prices, we would like to compare different specifications. The following models are
considered:

Model 1: Linear Regression
yi,t = β0 + β1∆realGDPi,t + β2Largei + Statei + εi

Model 2: Spatial Autoregressive Model

yi,t = β0 + ρ

n∑
j=1

wijyj,t + β1Largei + β2∆realGDPi,t + β3

n∑
j=1

wij∆realGDPj,t + Statei + εi

Model 3: Heterogenous Spatial Autoregressive Model
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yi,t = β0 + ρLLargei

n∑
j=1

wijyj,t + ρS (1− Largei)
n∑
j=1

wijyj,t + β1Largei

+ β2∆realGDPi,t + β3

n∑
j=1

wij∆realGDPj,t + Statei + εi

for t = 2006, · · · , 2014 and i belongs to our sample counties. In the regressions above, yi,t is the
annual change of HPI (%) of county iin year t. ∆realGDPi,t is the annual real GDP growth rate (%)
of county iin year t. Largei is the large city dummy, which equals 1 if the county i belongs to the
CSAs listed in Table 17. To control the policies on housing markets and other unobserved factors
correlated to local economy, geography and demography, state level fixed effect, which is denoted
as Statei, is also included in the regressions as the dummy variables for states. Since most of the
states in Northeastern are small and with small variations among counties on climate and pollution,
and the local policies regulating housing market are mostly state level, the state dummy would be
a good control for regional specific short-run factors which may affect local housing demand. The
real GDP growth captures the economics condition of each county. In Model 2 and Model 3, we
include neighborhood effect of local economic performances. To estimate the direct neighborhood
effect through the price channel, control the neighborhood effect through local economies channel is
necessary. Annual real GDP growth rate is a good approximation for local economic performance
throughout a year.

The neighborhood among counties are defined by whether they are adjacent to each other or
not, i.e. sharing land borders. We assume the spatial correlations for a county with all its neighbors
are homogeneous, and the total effect of neighbor are normalized to 1. Thus, we have

wij =

1/ni if j is adjacent to i

0 else

where ni is total number of county i. Thus,
∑n
j=1 wijyj,t and

∑n
j=1 wij∆realGDPj,t are the average

of annual HPI change (%) and GDP growth rate (%) of county i’s neighbors in year t, which is
similar to linear-in-means setting in peer effect literatures. The only difference is that there is no
such a group concept in our setting. Thus even if the neighborhoods are symmetric, neighbors
may have different neighbors despite other group members. In some regional economic literatures,
neighborhood relationship are defined by distance between two regions. However, since county is
a relatively large area instead of a single point, how to define the geographical distance between
counties is quit difficult and more or less subjective. Without additional information, adjacency
should be the most objective and natural way to capture the geographical spatial correlations.
Thus, now we can see clearly, Model 1 totally ignore the spatial correlations among the counties,
and assume the city size only have a direct effect on local housing market. Model 2 and Model 3
added spatial correlations among counties by two different channels: housing market itself as well
as economic growth. The difference between Model 1 and Model 2, is that whether the city size
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Table 12: Test Results of Moran’s I, LM1 and LM2

2006 2007 2008 2009 2010 2011 2012 2013 2014

Moran
Statistic 8.39 2.06 6.09 7.99 5.74 7.86 10.07 1.37 2.08
p-value .00 .04 .00 .00 .00 .00 .00 .17 .04

LM1
Statistic 87.83 9.56 41.75 65.92 29.13 69.44 119.91 2.60 6.70
p-value .00 .01 .00 .00 .00 .00 .00 .27 .04

LM2
Statistic 8.07 3.73 2.05 .62 .10 2.61 1.14 1.33 4.72
p-value .00 .05 .15 .43 .75 .11 .29 .25 .03

has an effect on the spatial correlations of housing market, i.e. whether the interaction of housing
market among neighbor counties are heterogeneous driven by their size. Comparison between these
three models can help us understand better about the city size effect in housing market through
different channels.

Before estimation, some statistical tests for spatial correlations can be done. To test whether
spatial correlation exists, i.e. differentiate between Model 1 and Model 2/3, we can implement
Moran’s I test and the LM1 test which we give in Section 3. To test whether the spatial correlation
is heterogeneous which caused by city size, i.e. differentiate between Model 2 and Model 3, we can
implement LM2 test which we give in Section 4. The test results are showed in Table 12, with
reporting the value of test statistics and the p-value using asymptotic critical values (For Moran’s
I, we report the standardized test statistic value instead of the original Moran’s I). For Moran’s
I, H0 is ρ = 0 in Model 2; for LM1 and LM2, their H0’s are ρH = ρL = 0 and ρH = ρL.

For the existence of the spatial correlation, p-value of Moran’s I and LM1 both suggest the
existence of spatial correlation despite in 2013. For most sample years, the test statistics rejects the
null hypothesis at 5% significant level. By contrast, results of LM2 are pretty different. In 2006 and
2014, the LM2 rejects the null hypothesis at 5% significant level, and rejects the null hypothesis
at 10% significant level in 2007. However, in other sample years, the test statistic is insignificant.
The results indicate a very interesting phenomenon: the spatial correlation among housing prices
has some degrees of heterogeneity by city size, which is correlated with the general performance of
housing market. The significant years, 2006, 2007 and 2014, are housing boom years, when both
the housing prices in large cities and small cities were rising up. When the housing prices went
down, the difference of spatial correlation seems to disappear. As

∑n
j=1 wij∆realGDPj,t had been

included when constructing LM2, it indicates that the heterogeneity is not driven by neighborhood
effect of economic performance.

29



Table 13: Results of Model 1 (Linear Regression)
2006 2007 2008 2009 2010 2011 2012 2013 2014

β0

8.28*** 2.19*** .73 -3.34*** -2.55*** -1.81*** -1.44** -.77 -1.23**
(.92) (.64) (.64) (.74) (.61) (.58) (.56) (.51) (.65)

β1

-.90* -2.27*** -1.83*** -1.50*** .35 -.56* .16 .70** 2.67***
(.54) (.38) (.38) (.43) (.35) (.034) (.33) (.31) (.39)

β2

.11** -.01 -.02 .06 .12*** .20*** .00 .05 -0.01
(.05) (.04) (.04) (.04) (.04) (.05) (.034) (.03) (0.04)

R2 .32 .39 .52 .55 .42 .37 .26 .16 .31

The next step is to estimate Model 1, 2 and 3 for each year to further investigate the size
effect. For Model 1 and Model 2, the maximum likelihood estimators are used in constructing LM1

and LM2. The consistency and asymptotic Normality of QMLE/MLE for SAR model had been
proved in Lee (2004). To estimate the Model 3, recall equation (2), we can view it as a special
case of a higher order spatial autoregressive model with two different types of spatial correlations.
In our setting, we can view H1Wn and H2Wn as two different spatial correlation matrices. Gupta
and Robinson (2018) had investigated the asymptotic properties of pseudo-maximum likelihood
estimator for higher order SAR model. However, in their simulation exercise, the finite sample bias
is relatively large when the true residual is not Normally distributed with small samples. Besides,
the post estimation t-statistic does not have good performance especially when sample size is small
even for Normal case. Here, we implement the MLE procedure to estimate our Model 3, but since
we have a relatively small sample with only 240 observations, the post-estimation t−tests may have
over-reject or lack of power issue which is not as trustable as the LM tests we implemented before.

Estimation results are reported in Table 13, 14 and 15, with all the parameters and their
standard deviations except for state level fixed effects. The standard deviation reported in Table
14 and 15 are derived from asymptotic variance of the maximum likelihood estimators. We also
reported R2 for each specification. Although by likelihood approach, the sum square of residual
is not minimized, R2 can still be a good measure of fitness. Pseudo-R2 or other likelihood based
benchmarks are not adopted in this paper, although MLE for SAR and HSAR are consistent, the
true residual distribution may not be Normal. Thus, the maximized likelihood value may not be
the true likelihood of our sample. In this sense, traditional R2 would be a better benchmark since it
is a distribution-free measure. We also report the post-estimation t−test results for H0 : ρH = ρL,
as a comparison and performance benchmark for our pre-estimation LM2 test.
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Table 14: Results of Model 2 (SAR)
2006 2007 2008 2009 2010 2011 2012 2013 2014

ρ
.51*** .20** .41*** .46*** .32*** .46*** .59*** .09 .10
(.07) (.09) (.07) (.07) (.08)) (.07) (.06) (.10) (.09)

β0

4.00*** 1.71*** .58 -1.61*** -2.19*** -1.3** -.53 -.72 -1.22
(.94) (.64) (.57) (.68) (.65) (.53) (.47) (.50) (.64)

β1

-.87* -2.02*** -1.23*** -.82** .61* -.26 .41 .67** 2.58***
(.46) (.38) (.35) (.38) (.32) (.30) (.27) (.30) (.39)

β2

.09** -.01 -.02 .02 .07** .15*** .01 .05 -.02
(.04) (.04) (.04) (.04) (.03) (.04) (.03) (.04) (.04)

β3

.07 .05 .12 .13 .19*** .17* .00 .03 .06
(.09) (.08) (.09) (.08) (.07) (.09) (.07) (.07) (.07)

R2 .34 .40 .54 .58 .46 .42 .29 .16 .31

By comparing results showed on Table 13, 14 and 15, we can clearly see that Model 3 specification
has significantly higher R2 than Model 1 and 2 in most of the sample years. By considering the
heterogeneous neighborhood effect corresponding to city size, Model 3 can explain the variance of
annual HPI change in our sample regions much better except for 2013. Due to the limitation of the
yearly data, there might be some structural change or seasonal issue in the middle of the year which
can not be captured by annual level economic performance and state level fixed effect. It might
be a potential reason why all of three specifications do not work well for 2013. Except 2013, our
yearly HSAR regression performs well in goodness of fitting. By comparing results showed on Table
12 and Table 15, the pre-estimation test LM2 for heterogeneous spatial correlation works pretty
well. The asymptotic p-value of post-estimation t−statistic are almost identical to the asymptotic
p-value of LM2 in all our sample years. Also, results of ρL and ρS in Table 15 also indicate the
good performance of LM1.

After comparison between models, let us focus on the effect of city size identified by Model
3. On one hand, the results of β1 indicates a time-varying difference among the performance of
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Table 15: Results of Model 3 (HSAR)
2006 2007 2008 2009 2010 2011 2012 2013 2014

ρL
.67*** .36*** .50*** .50*** .35*** .34*** .53*** .21 .33**
(.08) (.12) (.09) (.08) (.11) (.10) (.10) (.15) (.14)

ρS
.31*** .05 .33*** .41*** .31*** .55*** .66*** -.02 -.08
(.10) (.12) (.09) (.08) (.10) (.09) (.08) (.13) (.12)

β0

5.50*** 2.08*** .60 -1.77** -2.23*** -1.15** -.43 -.80 -1.3**
(1.09) (.67) (.56) (.69) (.66) (.53) (.47) (.50) (.63)

β1

-3.35*** -2.72*** -1.01*** -.50 .73 -.71* .22 .56* 1.92***
(.99) (.53) (.38) (.57) (.50) (.40) (.32) (.32) (.50)

β2

.10*** -.01 -.03 .02 .07** .14*** .01 .05 -.02
(.04) (.04) (.04) (.04) (.03) (.04) (.03) (.04) (.04)

β3

.11 .05 .13 .13 .19*** .16* .00 .02 .06
(.09) (.08) (.09) (.08) (.07) (.09) (.07) (.07) (.07)

R2 .84 .59 .61 .82 .75 .67 .53 .17 .44

Table 16: Post Estimation t-test for H0 : ρL = ρS

2006 2007 2008 2009 2010 2011 2012 2013 2014

t-statistic
Statistic 2.81 1.93 1.42 .78 .30 -1.60 -1.05 1.14 2.13
p-value .01 .05 .16 .44 .76 .11 .29 .25 .03
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housing market in large city areas and the others. From 2006 to 2008, the US economy shifted from
booming to depression, as well as the housing price, there is a strong and significant negative effect
among the large city areas. On average, the housing price in large city areas had more than 1% drop
than other areas in North eastern US after controlling neighborhood, economic growth and policy
effects. However, as the economy recovered from the depression slowly, the gap became ambiguous
and insignificant. Finally, after the housing market recovered to expansion in 2014, the gap flipped
to positive and significant, which is nearly 2% more annual growth in large cities. On the other
hand, the size heterogeneity among cities also affect the spatial correlations among housing markets.
When the housing market was expansion in 2006, 2007 and 2014, large city regions had significantly
higher correlations with their neighbors. When neighborhood regions had 1% increase on housing
price on average, the positive externality to large city areas are more than 0.3% than to other areas.
During the depression, the gap between the externality disappear, although the spatial correlations
are still significant expect in 2013. To our surprise, both the economic performance of a county
itself and the neighborhood economic performances do not affect the housing market significantly.
Local real GDP growth rate only had marginal impact on short-run housing price change in the
sample years which was not even stable. Externality through the neighbors’ economic growth to
local housing price was also weak and insignificant.

6.3 Why city size matters?

First, let us focus on the direct city size effect. Since the estimation results showed a dynamic
correlation among city size and housing price which is highly correlated with the business cycle,
in this section, we tried to investigate the origin of this relationship. Based on empirical results
in literatures and some facts showed in 2010 Census, the key factor here would be geographical
distribution of mortgage delinquency, which is driven by the different income distributions in large
cities and small locations.

During the financial crisis around 2008, housing mortgage delinquency was one of the key risk
source. By Mian and Sufi (2009), the housing price appreciation during 2001-2005 and the sub-
sequent mortgage defaults during 2005-2007 are driven by the rapid expansion in the supply of
mortgages. Further, in Adelino, Schoar and Severino (2015), by tracking individual data of house-
hold income, credit score and loan data, they found out the middle class people with relatively
high income and FICO score contributed increasing share of total housing mortgage delinquency
from 2003 and 2006. In Mian and Sufi (2015), they pointed out that the contribution to the total
dollar rise in household debt was strongest among individuals in the 20th to 60th percentile of the
initial credit score distribution from 2000 to 2007, however 73% and 68% of the total amount of
delinquent debt in 2007 and 2008 were contributed by the bottom 40% of the credit score groups.
After large amount of delinquencies happened, the house corresponding to delinquent mortgage
would highly probably be processed foreclosure, and banks would be more cautious on approval for
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new mortgages, there would be two simultaneous shocks to the housing market: positive to housing
supply and negative to housing demand, which would drive the housing price to decrease.

Based on the analysis before, during the delinquency boom from 2005 to 2008, mortgages to
low-income class kept contributing the major part as well as the increasing contribution of middle-
income class, the income distribution of different areas is an important factor on how large the shock
is to the housing market. Not only the absolute income level itself, but also the relative income to
housing price matters a lot. On one hand, inside a region, if the income inequality is more serious,
there will be more low-income and low middle-income people who need to raise their leverage to buy
a house relative to the population size. On the other hand, a region with relatively higher housing
price comparing to income will make the low-income and middle-income classes even harder to buy
their own house, and force them to borrow more money from banks. The housing market of a
region with a higher proportion of relatively “poor” people would be benefit from the increasing of
housing loans during the housing booms especially when banks expand sub-prime mortgage , but
will definitely received more shocks when the financial crisis happens.

Unfortunately, large city areas are facing both of the issues, highly unequal distribution of absolute
income and relatively low income comparing to home price. On one hand, Baum-Snow and Pavan
(2013) identified a strong positive monotonic relationship between wage inequality and city size
during 1979~2007 in the US. Even after controlling the difference among skills and experiences,
the rapid growth in wage inequality in larger locations can explain at least 23% of the nationwide
increase in the variance of log hourly wages. On the other hand, based on data from Joint Center
for Housing Studies (JCHS) of Harvard University5, county belongs to large MSAs and surrounding
areas have much higher home price to income ratios, especially during the housing boom from 2002
to 2006. As we analyzed before, when large amount of delinquencies happened starting from 2005,
the negative shock to housing market in large city regions would be larger. After the financial system
recovered and housing market expanded again, due to credit expansion, the inequality would drive
the housing price to grow. Our estimation result of β1 showed on Table 15 captures this dynamic
effect almost perfectly for different sample years which is also on the different stage of the financial
crisis. The results here also provide indirect evidence that dynamic of inequality is a major source
of financial crisis, which is investigated in Kumhof, Ranciere and Winant (2015), with considering
the degree of geographical inequality and relative inequality comparing to the housing price level
in different regions.

After investigate the direct effect of size, let us move to the heterogenous spatial correlation
corresponding to the city size. Our result shows that the counties belongs to large cities and
surrounding areas received significantly larger positive externality from neighborhood regions than
small locations when the housing price was rising in 2006, 2007 and 2014. However, when the market
performed bad, this difference become insignificant. It seems not intuitive since large cities in general
have better job opportunities, education and medical resources and entertainment facilities which

5See https://www.jchs.harvard.edu/blog/price-to-income-ratios-are-nearing-historic-highs
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are more attractive to people. Also, the economy and labor market in large cities and surrounding
areas in general are more integrated, thus have more inter-county transitions of people. These factors
are not affected by business cycle. However, if we consider the geographical income inequality, the
credit cycle might explain this effect. As we pointed out before, people are relatively poor comparing
the higher housing price. For a potential migrator from a neighborhood area, it is easier for them to
purchase a house during credit expansion. Also, more importantly, as an investor, he/she will only
be motivated to buy a house if the housing price in targeting area is increasing. Thus, although
large city areas are more attractive, the real estate assets may not be. Instead, some people may
give up to find a job in large cities, and move to small towns or rural areas. Then, externality from
this type of migration to housing market of small locations would increase, since housing markets
receive smaller degree of shocks and housing prices are more persistent in small locations as we
analyzed before. This may partially explain the disappeared gap of neighborhood effect observed
in our sample.

As a conclusion, we can see that size of a city have a large impact on housing market, and the impact
is dynamic and linked to business cycle and credit cycle. Not only the dynamic of housing price in
large cities and small locations are significantly different, their correlations with neighbors are also
distinct. Due to existing empirical evidence, the difference can be partially explained by income
inequality and housing mortgages. In existing regional economics and housing finance literatures,
the difference had not been investigated much yet. Since it might be helpful to policy makers to
regulate housing market, it would be beneficial to keep tracking on it.
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