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Abstract

We develop a GARCH-like model for capturing spatial heteroskedasticity and spill-over ef-
fect on volatility level. By proving the α−mixing property of the DGP, we derive the maximum-
likelihood estimator and prove some asymptotic properties. Monte Carlo simulations show good
finite sample properties of the MLE. When applying this model to US housing market, we iden-
tify the spatial spillover effect on volatility of county level housing prices in Northeastern US
which can not be explained by SAR model.

1 Introduction
This paper developed a GARCH-like model to study spatial heteroskedasticity and spill-over effect
at volatility level. Spatial Heteroskedasticity comes from heterogeneity. On one hand, demo-
graphic and economic differences across regions can make people have different preferences, risk
aversion levels and mobilities. Thus, people in different regions will have different responds and
decisions when they are facing same policy, economic shock and environmental change, such like
air pollution. On the other hand, as each region contains multiple individuals and legal entities,
such like companies, there exist heterogeneity inside a region. Thus, considering treatment effect
and macroeconomic performance, the heterogeneities will probably cause heteroskedasticity across
different regions. More over, due to information spread, labor mobility or similar geographic char-
acteristics, geographically closer regions or regions with closer economic correlation will have spill
over effect to each other. The spill-over effect will also show up on volatility level, not only the
spatial process itself which captured by SAR models. If we could capture both the spatial het-
eroskedasticity and the spill-over effect at volatility, it would be helpful to understand treatment
effect of a policy better, or understand co-movement among asset prices better, and then make bet-
ter policies or trading strategies.There are growing interests considering spatial correlation in many
fields, not only in traditional regional economics. For example, in asset pricing area, Steven Kou.
etc (2017) introduces spatial correlation into traditional CAPM, and develops a spatial arbitrage
pricing theory which can explain cross-sectional stock returns in eurozone. Robert J. Richmond
(2019) uses trade network to uncover the exposure to global risk and tries to explain the currency
risk premium. A model which can captures spill-over effect and spatial heteroskedasticity would be
helpful in empirical research on how risk spread across different markets.

In time series, ARCH and GARCH models are well established and empirically very useful
models to capture the autoregressive conditional heteroskedasticity structure and predict volatility
of macroeconomic variables, especially for financial asset returns and derivative prices. However, in
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spatial econometric literature, although the SAR is well established, it can only capture the spill-
over effect on the return level, but not the volatility level. In previous literatures, there are some
paper discussed the spatial heteroskedasticity issue. Bera and Simlai (2005) formats a spatial ARCH
model with conditional setting and give an application on Boston housing price. Sato and Matsuda
(2017) suggests a similar model and applies it in Tokyo land market. Caporin and Paruolo (2006),
as well as Borovkova and Lopuhaa (2012), formulates GARCH like spatial models. However, the
asymptotic theory of in those papers are not well-established. Kelejian and Prucha (2006) develops
an HAC estimator for regressions with spatial heteroskedasticity error terms. But this paper does
not focused on the structure of spatial heteroskedasticity. Thus, in this paper, we try to develop an
unconditional spatial GARCH-like model to capture both the spatial heteroskedasticity and spill-
over effect at the volatility level. Moreover, we try to give a formal discussion on MLE estimator
and its asymptotic properties. Besides, by analyzing the annual change of housing price indexes
in 240 northeastern US counties, we find out that SAR model is not enough to capture the spatial
correlation among housing prices across regions, and our model can be a good supplemental method
to capture the effects which SAR can not handle.

In the following part of this paper, Section 2 is the model setting and the proof of α−mixing
property which will be useful to develop further results on asymptotic theory. Section 3 is about
maximum-likelihood estimation, including the built up of likelihood function, concentrated likeli-
hood method and also the proof of identification, consistency and asymptotic Normality for a special
case. Section 4 is Monte Carlo simulation for finite sample performance of the maxim-likelihood
estimators. Section 5 is an Lagrangian multiplier test developed to differentiate the general case
and a special case. Finally, Section 6 is the application in housing market.

2 Model Setting and α−mixing Property

2.1 Data Generating Process
Suppose n individual spatial unites in an economy are located in a region Dn ⊂ Rd , where the
cardinality of Dn is |Dn| = n. For convenience, we name these n units as 1, 2, · · · , n. The distance
between individuals i and j is denotes by dij . For regularity, we need the following assumption:

Assumption 1:
dij > 1 for any i 6= j.
The data generating process is defined by the following two equations:

ui,n =
√
hi,nεi,n

loghi,n = φ

n∑
j=1

wij,nlogu
2
j,n + θ

n∑
j=1

wij,nloghj,n + α

where εi,n are i.i.d random process with mean 0 and variance 1, and wij,n are spatial correlation
between individual i and j. This model can be viewed as a spatial analog of GARCH or EGARCH
in some sense, but without conditional setting. However, there is no conditional variance setting
here. The hi,n is an indicator of the unconditional variance term. For particular εi,n process, it has
clear correlation between unconditional variance which will be discussed later.

After an easy transformation, we can get the following equation:

logu2
i,n = (φ+ θ)

n∑
j=1

wij,nlogu
2
j,n + logε2

i,n − θ
n∑
j=1

wij,nlogε
2
j,n + α (1)
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Denote logu2
n ≡ (logu2

1,n, · · · , logu2
n,n)

′
, logε2

n ≡ (logε2
1,n, · · · , logε2

n,n)
′
, Wn ≡ (wij)n×n, 1n ≡

(1, · · · , 1)
′
, we can write the following form for logu2

n process:

[In − (φ+ θ)Wn]logu2
n = (In − θWn)logε2

n + α1n (2)

To make sure this equation to be spatially stable for logu2
n, we need In−(φ+θ)Wn invertible. In

the following section, I will put more restrictive assumptions on this matrix for further properties.
Just focused on the form itself, it is easy to see the

{
logu2

i,n

}
i∈Dn

is a SARMA process but with
a non-zero drift term. We will use this result to extend properties of

{
logu2

i,n

}
i∈Dn

to {ui,n}i∈Dn .
In the remaining part of this paper, when we allow θ 6= 0, we call it a GARCH-like model. when
θ ≡ 0 as a special case, we call it an ARCH-like model where

{
logu2

i,n

}
i∈Dn

is a SAR process. In
general, this two type of model are both motivated by exponential stochastic volatility model in
time series literature.

When σ2
ε 6= 1, we have

log u2
i,n = (φ+ θ)

n∑
j=1

wij,n log u2
j,n + log ε2

i,n − θ
n∑
j=1

wij,n log ε2
j,n + α

= (φ+ θ)

n∑
j=1

wij,n log u2
j,n + log

(εi,n
σ

)2

− θ
n∑
j=1

wij,n log
(εj,n
σ

)2

+ lnσ2 − θ
n∑
j=1

wij,n lnσ2 + α

= (φ+ θ)

n∑
j=1

wij,n log u2
j,n + log

(εi,n
σ

)2

− θ
n∑
j=1

wij,n log
(εj,n
σ

)2

+ (1− θ) lnσ2 + α

This shows that the effect of σ2
ε is obsorbed by α. Thus, normalize σ2

ε = 1 can still generate the
same DGP.

2.2 α−mixing Property
In Jenish and Prucha (2009), they introduced mixing concepts from time series literatures to arbi-
trary random field and built up some very useful asymptotic results. One of the most important
mixing concept is α−mixing coefficient defined as following:

Definition 1 (α−mixing coefficient):
For two sub-σ-fields A and B, the α-mixing coefficient, also called strong mixing coefficient,

between A and B is defined as

α(A,B) ≡ sup(|Pr(A ∩B)− Pr(A) Pr(B)| : A ∈ A, B ∈ B)

For any two random variables(vectors) Y and Z, α(Y,Z) ≡ α(σ(Y ), σ(Z)), where σ(Y ) and
σ(Z) are the σ-fields generated by Y and Z.

Based on this concept, we can define the concept of α−mixing random field for spatial setting:
Definition 2 (α−mixing random field):
Let X = {Xi,n : i ∈ Dn, n ∈ N} be a triangular array of random vectors on a probability space

(Ω,F , P r). For U, V ⊆ Dn, denote σn(U) ≡ σ(Xi,n : i ∈ U) the σ-field generated by the random
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vectors Xi,n in U . For simplicity, αn(U, V ) ≡ α(σn(U), σn(V )). The notion of α-mixing coefficient
for X is

αk,l,n(r) ≡ sup
U,V⊆Dn

{αn(U, V ) : |U | 6 k, |V | 6 l, d(U, V ) > r}

where d(U, V ) ≡ inf{dij : i ∈ U, j ∈ V } is the distance between U and V . Denote αk,l(r) ≡
supn αk,l,n(r). X is said to be α-mixing iff for any k, l ∈ N, limr→∞ αk,l(r) = 0.

From the definitions above, we can see that the dependence between any two different regions
are descending to zero as their distance increasing. The remaining part is to find out whether our
process {ui,n}i∈Dn is α−mixing or not.

With noticing that ui,n = |ui,n| sgn(ui,n) = exp( 1
2 logu

2
i,n)sgn(εi,n), and the function f(a, b) =

exp( 1
2a)sgn (b) is measurable. Since α−mixing property is preserved measurable functions which

is also proved in Jenish and Prucha (2009), if we could get that {(logu2
i,n, εi,n)

′}i∈Dn is α-mixing,
then {ui,n}i∈Dn is α-mixing.

As {εi,n}i∈Dn is an i.i.d random process with mean 0 and variance 1, we have {(logε2
i,n, εi,n)}i∈Dn

is an i.i.d random vector. Denote Gn ≡ [In − (φ + θ)Wn]−1(In − θWn) ≡ (gij)n×n, Cn ≡ α[In −
(φ+ θ)Wn]−11n ≡ (c1,n, · · · , cn,n)

′
, we can get

(
logu2

i,n

εi,n

)
=

(
ci,n
0

)
+

n∑
j=1,j 6=i

(
gij 0
0 0

)(
logε2

j,n

εj,n

)
+

(
gii 0
0 1

)(
logε2

i,n

εi,n

)

Denote zi,n ≡ (logu2
i,n, εi,n)

′
, ei,n ≡ (logε2

i,n, εj,n)
′
, Zn ≡ (z

′

1,n, · · · , z
′

n,n)
′
, en ≡ (e

′

1,n, · · · , e
′

n,n)
′
,

G̃ij,n ≡
(
gij 0
0 0

)
when i 6= j, G̃ii,n ≡

(
gii 0
0 1

)
, G̃n ≡

 G̃11,n · · · G̃in,n
...

. . .
...

G̃n1,n · · · G̃nn,n

, then we have

Zn = G̃nen + (c1,n, 0, c2,n, 0, · · · , cn,n, 0)
′

If {
(

z̃i,n
(ci,n, 0)

′

)
}i∈Dn ≡ {

(
zi,n − (ci,n, 0)

′

(ci,n, 0)
′

)
}i∈Dn is α-mixing, then {zi,n}i∈Dn is α-mixing

since f(x, y) = x+ y is measurable. First, we can focus on the stochastic part:

Z̃n ≡ (z̃
′

1,n, · · · , z̃
′

n,n)
′

= G̃nen

In Xu and Lee (2019), they have a detailed discussion on the α-mixing property of this type of
spatial processes (Section 3.1, the spatial autoregressive model). With proper assumptions on G̃n
and en, we can make sure Z̃n is α-mixing. First, we need the following assumption for en:

Assumption 2:
(1) The distribution of εi,n is absolute continuous.
(2) For any i ∈ Dn and n, ‖en‖L2 ≡ supj∈Dn max

{∥∥logε2
j,n

∥∥
L2 , ‖εj,n‖L2

}
<∞.

Since the density of en are concentrated at
(
lnx2, x

)
∈ R2

and fe
(
lnx2, x

)
= fε (x), the absolute

continuity of distribution of en is ensured. So, en satisfies the Assumption 2.3 and 2.4 in Xu and
Lee (2019).

Now, we need to focus on the matrix G̃n. Recall the form of G̃n :
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G̃n =

 G̃11,n · · · G̃1n,n

...
. . .

...
G̃n1,n · · · G̃nn,n

 =



(
g11,n 0

0 1

)
· · ·

(
g1n,n 0

0 0

)
...

. . .
...(

gn1,n 0
0 0

)
· · ·

(
gnn,n 0

0 1

)


Notice that by switching rows and columns with the same procedure, G̃n can be transferred to(
Gn 0
0 In

)
. Thus, we can write G̃n as:

G̃n = Tkn · · ·T2T1

(
Gn 0
0 In

)
T1T2 · · ·Tkn = K

′

n

(
Gn 0
0 In

)
Kn

where Kn ≡ T1 · · ·Tkn , and for any j ∈ {1, · · · , kn}, Tj =



1
. . .

0 · · · 1
...

. . .
...

1 · · · 0
. . .

1


which

equals to In but with (Tj)mn = (Tj)nm = 1 and (Tj)nn = (Tj)mm = 0 for a pair of m 6= n. Easy
to check, Tj has some important properties: |Tj | = −1, T

′

j = T−1
j = Tj . Thus, Kn matrix has the

following properties: K
′

n = K−1
n = Tk · · ·T1, |Kn| = (−1)

k. Thus, we can easily get the following
property of G̃n with assuming Gn is invertible:

G̃−1
n =

[
K
′

n

(
Gn 0
0 In

)
Kn

]−1

= K ′n

(
G−1
n 0
0 In

)
Kn

=



(
(G−1

n )11,n 0
0 1

)
· · ·

(
(G−1

n )1n,n 0
0 0

)
...

. . .
...(

(G−1
n )n1,n 0

0 0

)
· · ·

(
(G−1

n )nn,n 0
0 1

)


Here are some additional notations. For any finite dimensional vector x, |x| ≡ (x
′
x)1/2 is the

Euclidian norm, ‖x‖1 ≡
∑
i |xi|, and ‖x‖∞ ≡ maxi |xi|. For any finite dimensional n × n matrix

A ≡ (aij), ‖A‖∞ ≡ supi=1,··· ,n
∑n
j=1 |aij | is the row sum norm, and ‖A‖1 ≡ supi=1,··· ,n

∑n
i=1 |aij | is

the column sum norm. For any Q ⊂ Dn and any s > 0, denote Qs = {i ∈ Dn : d(i, Q) < s}, which
is the set of individuals located within distance s from the set Q, and FQ,n = σ ({ej,n : j ∈ Q}) is
the σ-field generated by disturbance ej,n for individuals in Q.

Now, we need to put some additional assumptions on Gn and Wn:
Assumption 3:
For any two regions i, j, we have the following properties for their correlation wij,n :
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(1) for every i, we have wii,n = 0;
(2) when dij > d̄0, wij,n = 0, where d̄0 is a constant greater than 1.
This is the setting which does not allow direct correlations between individuals far away form

each other.
Assumption 4:
Gn ≡ [In− (φ+ θ)Wn]−1(In− θWn) has the following properties for given real number θ and φ:
(1) Gn is invertible, which requires In − (φ+ θ)Wn and In − θWn both invertible;
(2) ξ= ‖(φ+ θ)Wn‖∞ < 1;
(3) ζ = ‖θWn‖∞ < 1.
With Assumption 3 and Assumption 4, we can decompose Gn as the following when φ+ θ 6= 0:

Gn =

∞∑
l=0

[(φ+ θ)Wn]l(In − θWn) =

∞∑
l=bdij/d̄0c

[(φ+ θ)Wn]l − θ

φ+ θ

∞∑
l=bdij/d̄0c

[(φ+ θ)Wn]l+1

where bxc is the largest integer that is less than or equal to x.
Then, we can get

|gij,n| =

∣∣∣∣∣∣∣
∞∑

l=bdij/d̄0c
[(φ+ θ)Wn]lij −

θ

φ+ θ

∞∑
l=bdij/d̄0c

[(φ+ θ)Wn]l+1
ij

∣∣∣∣∣∣∣
6

∞∑
l=bdij/d̄0c

[
‖(φ+ θ)Wn‖l∞ +

|θ|
|θ + φ|

‖(φ+ θ)Wn‖l+1
∞

]

6

(
1 +

|θ|
|θ + φ|

ξ

)
ξbdij/d̄0c

1− ξ

From Lemma A.1 in Jenish and Prucha (2009), for any l > 0 and for any i ∈ Dn,
∣∣{j ∈ Dn : ld̄0 6 dij 6 (l + 1)d̄0

}∣∣ 6
C1(l+1)d−1 for some constant C1 > 0. The index d is the dimension of the space Dn. If we consider
time series model as a special case, d = 1; for spatial case, d = 2. Thus, we have the following
result:

sup
n
‖Gn‖1 = sup

j∈Dn,n

n∑
i=1

|gij,n|

= sup
j,n

∞∑
l=0

∑
i∈Dn:ld̄0<dij<(1+l)d̄0

|gij,n|

6
∞∑
l=0

C1(l + 1)d−1(1 +
|θ|
|θ + φ|

ξ)
ξl

1− ξ
<∞

As G−1
n = (In − θWn)−1[In − (φ + θ)Wn], we can get supn

∥∥G−1
n

∥∥
1
< ∞ following the similar

procedure above by expending (In − θWn)−1 as we have the assumption ζ = ‖θWn‖ < 1. We can
also get lims→∞ supn supj∈Q[

∑
r∈Dn�Qs

∣∣(G−1
n )r,j

∣∣] = 0 by Assumption 3 for the spatial matrix
setting. When θ+ φ = 0, Gn = In − θWn which also satisfies the above results. Then, we have the
following statement for G̃n based on the properties of Gn:
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Lemma 1:
The matrix G̃n satisfies the Assumption 2.2 in Xu and Lee (2019):
(1) G̃n is invertible;
(2) supn

∥∥∥G̃n∥∥∥
1
<∞, and supn

∥∥∥G̃−1
n

∥∥∥
1
<∞;

(3) lims→∞ supn supj∈Q;q=1,2[
∑
r∈Dn�Qs;t=1,2

∣∣∣(G̃−1
n )tq,rj

∣∣∣] = 0 where (G̃−1
n )tq,rj is the (t, q)th

element of (r, j)th block of 2× 2 sub-matrix of G̃−1
n .

Proof:
(1) As G̃n = Tkn · · ·T2T1

(
Gn 0
0 In

)
T1T2 · · ·Tkn = K

′

n

(
Gn 0
0 In

)
Kn, since Gn and Kn

are invertible, G̃n is invertible since
∣∣∣G̃n∣∣∣ = |Gn| 6= 0;

(2) From the form of G̃n and G̃−1
n , we can get that

sup
n

∥∥∥G̃n∥∥∥
1

= sup
n

(‖Gn‖1 , 1) = max(1, sup
n
‖Gn‖1) <∞

sup
n

∥∥∥G̃−1
n

∥∥∥
1

= sup
n

(
∥∥G−1

n

∥∥
1
, 1) = max(1, sup

n

∥∥G−1
n

∥∥
1
) <∞

(3) From the form of G̃n, we have

lim
s→∞

sup
n

sup
j∈Q;q=1,2

[
∑

r∈Dn�Qs;t=1,2

∣∣∣(G̃−1
n )tq,rj

∣∣∣]
= lim
s→∞

sup
n

sup
j∈Q

[
∑

r∈Dn�Qs

∣∣(G−1
n )r,j

∣∣ = 0 @

␣
Denote As ≡ supi∈Dn,n

∑2
k=1

∑2
q=1

∑
j∈Dn:dij>s

g̃2
kq,ij,n, where g̃pq,ij,n comes from a new nota-

tion G̃ij,n ≡ (g̃pq,ij,n)2
p,q=1. Thus, we can get the following result:

As = sup
i∈Dn,n

∑
j∈Dn:dij>s

g̃2
ij,n

6 sup
i∈Dn,n

∑
l=bs/d̄0c

∑
j∈Dn:l6dij/d̄0<l+1

g̃2
ij,n

6
∑

l=bs/d̄0c
C1(l + 1)d(1 +

|θ|
|θ + φ|

ξ)2 ξ2l

(1− ξ)2

6
C1(1 + |θ|

|θ+φ|ξ)
2

(1− ξ)2

∫ ∞
bs/d̄0c

xd+1ξ2(x−2)dx

= O(sd−1ξ2s/d̄0)

where the last inequality is coming from the following limit: lima→∞

∫∞
a
xd−1ξxdx

ad−1ξa
= − 1

lnξ by
L’Hospital’s rule.

Thus, with all the assumptions and results above, we can apply Theorem 1(2) in Xu and Lee
(2019), the α-mixing coefficients of the random field {z̃i,n}i∈Dn ≡ {zi,n − (ci,n, 0)

′}i∈Dn satisfy:
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αk,l(r) 6 C2min(k, l)A
1/2
r/2 6 C3min(k, l)(rd−1ξr/d̄0)1/3

for any positive integers k, l and any r > 2s0. C2 and C3 are some large enough positive constants.
As limr→∞ raξbr = 0 for any positive a and b since ξ < 1, we have limr→∞ αk,l(r) = 0. Thus,
{z̃i,n}i∈Dn is α-mixing when we do not direct correlations between individuals far away.

Theorem 1: Under Assumption 1, 2, 3 and 4, {ui,n}i∈Dn is α−mixing.
Proof:

With the previous results, the last thing need to prove is that {ψi,n}i∈Dn ≡ {
(

z̃i,n
(ci,n, 0)

′

)
}i∈Dn

is α-mixing, where for ∀n, ci,n’s are fixed constants given θ, φ and Wn. Thus, for any event
A,B ∈ σ({(xi,n, yi,n)i∈Dn , x, yi,n ∈ R}) and n,

Pr(z̃i,n ∈ A, (ci,n, 0)
′
∈ B) =

{
0 if{(ci,n, 0)

′
= ((α[In − (φ+ θ)Wn]−11n)i, 0)

′
,∀i} /∈ B

Pr(z̃i,n ∈ A) else

= Pr(z̃i,n ∈ A) Pr((ci,n, 0)
′
∈ B)

since Pr((ci,n, 0)
′ ∈ B) =

{
0 if{(ci,n, 0)

′
= ((α[In − (φ+ θ)Wn]−11n)i, 0)

′
,∀i} /∈ B

1 else
. Thus,

{z̃i,n}i∈Dn and {(ci,n, 0)}′i∈Dn are independent. Thus for any eventA1⊗B1, A2⊗B2 ∈ σ({ψi,n}i∈Dn) ≡
σ({z̃i,n}i∈Dn) ⊗ σ({(ci,n, 0)}′i∈Dn) and n, if event {(ci,n, 0)

′
= ((α[In − (φ + θ)Wn]−11n)i, 0)

′
,∀i}

contains in C and D, then we have

Pr((A1 ⊗B1) ∩ (A2 ⊗B2))− Pr(A1 ⊗B1) Pr(A2 ⊗B2)

=

{
0 if{(ci,n, 0)

′
= ((α[In − (φ+ θ)Wn]−11n)i, 0)

′
,∀i} /∈ B1 ∩B2

Pr(A1 ∩A1)− Pr(A1) Pr(A2) else

Thus, for any sub σ-field A,B ⊂ σ({ψi,n}i∈Dn), we have

α(A,B) ≡ sup(|Pr((A1 ⊗B1) ∩ (A2 ⊗B2))− Pr(A1 ⊗B1) Pr(A2 ⊗B2)| : A1 ⊗B1 ∈ A, A2 ⊗B2 ∈ B)

6 sup(|Pr(A1 ∩A2)− Pr(A1 ∩A2)| , A1, A2 ∈ σ({z̃i,n}i∈Dn))

Since {z̃i,n}i∈Dn is α-mixing, {
(

z̃i,n
(ci,n, 0)

′

)
}i∈Dn is α-mixing with the α-mixing coefficient

α
′

k,l(r) 6 αk,l(r), for any positive integer k, l and any r > 1. As the α−mixing property is
preserved by measurable transformations, we have ui,n = exp

(
logu2

i,n

)
sgn (εi,n) is mixing. @

Thus, we have {zi,n}i∈Dn ≡ {(logu2
i,n, εi,n)

′}i∈Dn and {ui,n}i∈Dn are α-mixing under measurable
function claims before. Further more, from Jenish and Prucha (2009), we can get that the α-
mixing coefficients for {zi,n}i∈Dn and {ui,n}i∈Dn are also less than αk,l(r), thus bounded from
above by C3min(k, l)(rd−1ξr/d̄0)1/3 or C4 min(k, l)r(d−2α)/3 under Assumption 3 or Assumption 3’.
The α−mixing property and the upper-bound of mixing coefficients will be essential to build up
asymptotic property for potential estimators.
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3 Maximum-Likelihood Estimation

3.1 Preliminary Results and Regularity Conditions
To write down the likelihood function of {ui,n}i∈Dn , we need to the following result:

Theorem 2:
The projection between εn = (ε1,n, · · · , εn,n)

′
and un = (u1,n, · · · , un,n)

′
given by the spatial

GARCH-like model is a bijection.
Proof:
First, we can write hi,n as functions of {εi,n}i∈Dn or {ui,n}i∈Dn , and then we can represent εn

and un by each other.
1. Direction u→ ε:
The second equation has a matrix form:

loghn = φ(In − θWn)−1Wnlogu
2
n + α(In − θWn)−11n

From this form, we can directly write hi,n as function of ui,n’s:

hi,n = exp{(α
n∑
j=1

((In − θWn)−1)ij}
n∏
j=1

u
2(φ(In−θWn)Wn)ij
j,n

Thus, since εi,n = h
− 1

2
i,n ui,n, we can get

εi,n = exp

−1

2
α

n∑
j=1

((In − θWn)−1)ij


n∏
j=1

|uj,n|−(φ(In−θWn)−1Wn)ij ui,n

≡ exp{Ai(α, θ)}
n∏
j=1

|uj,n|Bij(θ,φ)
ui,n (3)

where Ai is the sum of ith row elements of An ≡ − 1
2α(In−θWn)−1, and Bij is the (i, j) th element

of Bn ≡ −φ(I − θWn)−1Wn.
2. Direction ε→ u:
Since logu2

i,n = loghi,n + logε2
i,n, after replacing logu2

j,n in the second equation, we can get

loghn = φ[In − (φ+ θ)Wn]−1Wnlogε
2
n + α[In − (φ+ θ)Wn]−11n

From this form, we can directly write hi,n as function of εi,n’s:

hi,n = exp{α
n∑
j=1

([In − (φ+ θ)Wn]−1)ij}
n∏
j=1

ε
2(φ[In−(φ+θ)Wn]−1Wn)ij
j,n

Thus, replacing hi,n in the first equation, we can get

ui,n = exp{1

2

n∑
j=1

([In − (φ+ θ)Wn]−1)ij}
n∏
j=1

|εj,n|(φ[In−(φ+θ)Wn]−1Wn)ij εi,n

≡ exp{Ci(α, φ, θ)}
n∏
j=1

|εj,n|Dij εi,n (4)
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where Ci is the sum of ith row elements of Cn ≡ 1
2α[In − (φ + θ)Wn]−1, and Dij is the (i, j) th

element of Dn ≡ φ[In − (φ+ θ)Wn]−1Wn.
By showing these two directions, we can see the mapping between un and εn is a bijection. �

From the results above, we can evaluate the mean of ui,n:

E(ui,n) = E(exp{Ci(α, φ, θ)}
n∏
j=1

|εj,n|Dij εi,n)

= exp{Ci(α, φ, θ)}
n∏

j=1,j 6=i

E(|εj,n|Dij )E
(
|εi,n|Dii εi,n

)
Since we assume εi,n ∼ (0, 1) i.i.d, if the density function of εi,n is symmetric by y−axis,

E(|εi,n|Dii εi,n) =

∫ ∞
−∞
|εi,n|Dii εi,ndF (ε) = 0

when
∫∞

0
εDii+1
j,n dF (ε) < ∞ since the function inside the integral is an odd function. Then, if

E(|εj,n|Dij ) =
∫∞

0
ε
Dij
j,n <∞ for ∀j, then we can get E(ui,n) = 0.

Look back the matrix Dn, based on previous assumptions, we can decompose Dn as

Dn = φ[In − (φ+ θ)Wn]−1Wn = φ

∞∑
k=1

(φ+ θ)kW k+1
n

For each element Dij , we have Dij = φ
∑∞
k=1(φ + θ)k(W k+1

n )ij . For a typical spatial matrix,
since each element is non-negative, each element of W k+1

n is non-negative. When φ and φ + θ are
non-negative, we have Dij > 0. For εi,n with symmetric density function or εi,n ∼ N(0, 1) i.i.d,
since

∫∞
0
εpdF (ε) <∞ for any positive p, we have E(εi,n) = 0 for ∀i. In this case, with sufficiently

higher order moments exist, we can also insure finite variance:

V ar(ui,n) = E(u2
i,n) = exp{2Ci(α, φ, θ)}

n∏
j=1,j 6=i

E(ε
2Dij
j,n )E

(
ε2+2Dii
i,n

)
<∞

However, for other values of φ and θ, things become much more complicated since
∫∞

0
εpdF (ε) <

∞ does not always hold when p < 0. Take standard normal distribution as an example,

∫ ∞
0

xp
1√
2π

exp{−x
2

2
}dx =

1√
2π

∫ ∞
0

√
2(
√

2y)pe−y
2

dy

=
1√
2π

2
1+p

2

∫ ∞
0

yp−1e−y
2

dy

= (2π)−
1
2 2−pΓ(

p+ 1

2
)

Since the Gamma function is undefined at non-positive integers, we need to avoid the set p ∈
{−1,−2,−3, · · · } to make sure

∫∞
0
εpdF (ε) <∞. Similar to the analysis before for Gn, we have
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|Dij | =
φ

φ+ θ

∞∑
l=bdij/d̄0c

[(φ+ θ)Wn]l+1

6
∞∑

l=bdij/d̄0c

|φ|
|θ + φ|

‖(φ+ θ)Wn‖l+1
∞

6 sup
(θ,φ)∈Θ

|φ|
|θ + φ|

ξbdij/d̄0c

1− ξ

when φ+ θ 6= 0 and |Dij | = |φwij,n| when φ+ θ = 0.
The only way to make sure every Dij does not meet negative integer is to make sure |Dij | < 1.

For most commonly used spatial weighting matrix, row-normalized Wn, ξ = |θ + φ| < 1. Easy to
see |Dij | < 1 is satisfied when φ+ θ = 0. When φ+ θ 6= 0, we have

|Dij | 6
|φ|
|θ + φ|

|θ + φ|
1− |θ + φ|

< 1 =⇒ |θ + φ|+ |φ| < 1

But this condition can not make sure V ar(ui,n) < ∞. Even if the expectation equals to 0, we
need to make sure

∫∞
0
ε

2Dij
i,n dF (ε) <∞, which can be make sure when |θ + φ|+ |φ| < 1

2 .
When we have εi,n ∼ Uniform(

√
3,
√

3) i.i.d with row normalized spatial matrix, this condition

can also make E(ui,n) = 0 and V ar(ui,n) <∞ since
∫√3

0
xpdx <∞ iff p > −1. But this condition

can only make sure second order moment exist, for higher order moments, the parameter space will
be more restrictive to make sure the existence. This will potentially make asymptotic theory fail.
Also, negative θ + φ is somewhat counter-intuitive. When θ + φ < 0, it means the externality one
area to another at volatility level is negative in general, but no matter we have positive or negative
externality at mean level, it is natural to have a positive impact on volatility to adjunct area. Thus,
in the following part of this paper, we will only consider the case when φ and θ+φ are non-negative.

Combining the arguments above with previous assumptions for α-mixing property, it is conve-
nient to limit our spatial weighting matrix in the row-normalized and matrix class, so that we can
have a clear parameter space for θ and φ. Thus, we put the following assumption:

Assumption 5:
(1) Wn is row-normalized matrix, i.e.

∑n
j=1 wij,n = 1 for ∀i = 1, · · · , n;

(2) The induced parameter space for θ and φ is Θ = {(α, θ, φ) : α ∈ R,−1 < θ < 1, 0 6 φ <
1, 0 6 φ+ θ < 1};

(3) εi,n
iid∼ (0, 1) with E

(
εki,n
)
<∞ for ∀k > 0.

This condition can make sure the Assumption 2 holds, since E log ε2k
i,n 6 logEε2k

i,n < ∞ for
∀k > 0 by Jenssen’s Inequality.

A special case is when εi,n
iid∼ N (0, 1), we can get the following result:
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E(hi,n)

V ar(ui,n)
=

exp{2Ci(α, φ, θ)}
∏n
j=1E(ε

2Dij
i,n )

exp{2Ci(α, φ, θ)}
∏n
j=1,j 6=iE(ε

2Dij
i,n )E

(
ε2+2Dii
i,n

)
=

E(ε2Dii
i,n )

E(ε2Dii+2
i,n )

=
(2π)−

1
2 2−

1−2Dii
2 Γ( 1+2Dii

2 )

(2π)−
1
2 2−

−2Dii−1

2 Γ(
3+2Dii

2 )

=
Γ( 1

2 +Dii)

2Γ( 3
2 +Dii)

=
1

2Dii + 1

Thus, we have

V ar(ui,n) = (2Dii + 1)E(hi,n) = [2(φ[In − (φ+ θ)Wn]−1Wn)ii + 1]E(hi,n) (5)

From this equation, we can see, the variance of ui,n is a linear function of the expectation of hi,n.
Once we get consistent estimator of α, φ and θ, since hi,n is a continuous function of the parameters,
we get consistent estimator of hi,n. Then we can get consistent estimator of V ar(ui,n). For general

εi,n, since
E(hi,n)
V ar(ui,n) =

E(ε
2Dii
i,n )

E(ε
2Dii+2

i,n )
always holds, we still have the linear relationship between E(hi,n)

and V ar(ui,n).

3.2 Likelihood Function and Estimation Procedure
From the equation (3), we can easily see that εi,n is an odd function of ui,n and an even function of
εi,n for ∀j 6= i. Notice that εi,n(un) is differentiable when uj,n 6= 0 for ∀j ∈ Dn,

∂εi,n
∂uj,n

exists and has
very good property: when j = i, it is an even function of ui,n; when j 6= i, it is an even function of
uj,n followed by properties of derivatives. Thus, we can consider the case when εj,n > 0, and then
extend the result to the whole domain. For the function f(x) = |x|k, the derivative is f ′(x) = kxk−1

when x > 0. Due to f(x) is even, f
′
(x) is odd, then we can get that f

′
(x) = sgn(x)kxk−1 = k |x|

k

x

whenever x 6= 0. Similarly, for the function g(x) = x |x|k, we have g
′
(x) = |x|k. Thus, we can get

the following first order derivatives:

∂εi,n
∂ui,n

= [1 +Bii(θ, φ)] exp{Ai(α, θ)}
n∏
j=1

|uj,n|Bij(θ,φ)
= [1 +Bii(θ, φ)]

εi,n
ui,n

∂εi,n
∂uk,n

= Bi,k(θ, φ)

n∏
j=1

|uj,n|Bij(θ,φ) 1

uk,n
=
Bi,k(θ, φ)εi,n

uk,n
,∀k 6= n

Thus, the Jacobean matrix from u to ε is
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Ju→ε =


(1 +B11)

ε1,n
u1,n

B12ε2,n
u1,n

· · · B1nεn,n
ui,n

B21ε1,n
u2,n

(1 +B22)
ε2,n
u2,n

· · · B2nε2,n
u1,n

...
...

. . .
...

Bn1ε1,n
un,n

Bn2ε2,n
un,n

· · · (1 +Bnn)
ε1,n
un,n


The determinant of Ju→ε is

det(Ju→ε) =

n∏
i=1

εi,n
ui,n

∣∣∣∣∣∣∣∣∣
1 +B11 B12 · · · B1n

B21 1 +B22 · · · B2n

...
...

. . .
...

Bn1 Bn1 · · · 1 +Bnn

∣∣∣∣∣∣∣∣∣
=

n∏
i=1

h
− 1

2
i,n

∣∣In − φ(In − θWn)−1Wn

∣∣
Notice that

n∏
i=1

h
− 1

2
i,n = exp

{
−1

2

n∑
i=1

loghi,n

}

= exp

{
−1

2
[1
′

nφ(In − θWn)−1Wnlogu
2
n + α1

′

n(In − θWn)−11n]

}
Thus, the determinant of Jacobean matrix can be written as

det(Ju→ε) = exp

{
−1

2
[1
′

nφ(In − θWn)−1Wnlogu
2
n + α1

′

n(In − θWn)−11n]

} ∣∣In − φ(In − θWn)−1Wn

∣∣
Thus, by applying the density function of N(0, In), the log-likelihood function of un is

lnLn(un;α, φ, θ) = −n
2

ln(2π)− 1

2

n∑
i=1

ε2
i,n(un) + ln |det(Ju→ε)|

= −n
2

ln(2π)− 1

2

n∑
i=1

exp

−α
n∑
j=1

((In − θWn)−1)ij


n∏
j=1

|uj,n|−2(φ(In−θWn)−1Wn)ij u2
i,n

− 1

2
[1
′

nφ(In − θWn)−1Wnlogu
2
n + α1

′

n(In − θWn)−11n] + ln
∣∣In − φ(In − θWn)−1Wn

∣∣
This log-likelihood functions seems very complicated, but by assuming Wn is a row-normalized

matrix, i.e. Wn1n = 1n. Thus for ∀k ∈ N, we have W k
n1n = 1n. By this property, we can get

n∑
j=1

((In − θWn)−1)ij =

n∑
j=1

(

∞∑
k=0

(θWn)k)ij =

∞∑
k=0

θk
n∑
j=1

(W k
n )ij =

∞∑
k=0

θk =
1

1− θ

and
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1
′

n(In − θWn)−11n = 1
′

n

∞∑
k=0

θkW k
n1n = n

∞∑
k=0

θk =
n

1− θ

Also, we have ln
∣∣In − φ(In − θWn)−1Wn

∣∣ = ln |In − (θ + φ)Wn| − ln |In − θWn|, then we can
simplify the log-likelihood function and get

lnLn(un;α, φ, θ) = −n
2

ln(2π)− 1

2
exp

{
− α

1− θ

} n∑
i=1

n∏
j=1

|uj,n|−2(φ(In−θWn)−1Wn)ij u2
i,n

− 1

2
[1
′

nφ(In − θWn)−1Wnlogu
2
n +

nα

1− θ
] + ln |In − (θ + φ)Wn| − ln |In − θWn|

(6)

To get the MLE, we need to maximize this log-likelihood function. But there is a computational
issue: αcan take any value in R, which will increase the computation burden. To make it easier,
we can concentrate out α. Here is the first order condition for α:

∂ lnLn(un;α, φ, θ)

∂α
=

1

2(1− θ)
exp

{
− α

1− θ

} n∑
i=1

n∏
j=1

|uj,n|−2(φ(In−θWn)−1Wn)ij u2
i,n −

n

2(1− θ)
= 0

(7)
From this FOC, we can write down the maximum likelihood estimator of α by the other esti-

mators:

α̂ = (1− θ) ln[
1

n

n∑
i=1

n∏
j=1

|uj,n|−2(φ(In−θWn)−1Wn)ij u2
i,n] (8)

Thus, by concentrating out α, we can get the following concentrated log-likelihood function with
only φ and θ remained:

gn(un;φ, θ) = −1

2
{1
′

nφ(In − θWn)−1Wnlogu
2
n + n ln[

1

n

n∑
i=1

n∏
j=1

|uj,n|−2(φ(In−θWn)−1Wn)ij u2
i,n]}

+ ln |In − (θ + φ)Wn| − ln |In − θWn| −
n

2
[ln(2π) + 1] (9)

This equation is much easier to be maximized. From Assumption 5, φ and θ are bounded. Thus,
using local optimization method to find the maximum for (9) will much efficient than doing global
search for (6).

3.3 Identification
Theorem 3:

Under Assumption 3, 4 and 5, when φ0 6= 0, the spatial GARCH-like model can be identified.
Proof:
Let ψ0 = (α0, φ0, θ0)

′
be the true parameter, and ψ = (α, φ, θ)

′
be an arbitrary value of parame-

ter in Θ defined in Assumption 5. Since lnx 6 x−1 for any x > 0, we can also have ln
√
x 6
√
x−1.

Thus, we have
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E ln [Ln(ψ)/Ln(ψ0)] 6 E
(√

Ln(ψ)/Ln(ψ0)− 1
)

=

∫ (√
Ln(ψ)/Ln(ψ0)− 1

)
Ln(ψ0)dun

=

∫ √
Ln(ψ)Ln(ψ0)dun − 1

= −1

2

∫ [√
Ln(ψ)−

√
Ln(ψ0)

]2
dun 6 0

This implies in particular the information inequality that E lnLn(ψ) 6 E lnLn(ψ0) for all ψ.
Thus, ψ0 is a maximizer. Also, this inequality also implies that if E lnLn(ψ) = E lnLn(ψ0),
lnLn(ψ) = lnLn(ψ0) almost surely. Assume there exist ψ1 that lnLn(ψ1) = lnLn(ψ0) almost
surely, then we must have If

− 1

2
exp

{
− α1

1− θ1

} n∑
i=1

n∏
j=1

|uj,n|−2(φ1(In−θ1Wn)−1Wn)ij u2
i,n −

1

2
1
′

nφ1(In − θ1Wn)−1Wnlogu
2
n

− nα1

2(1− θ1)
+ ln

∣∣In − φ1(In − θ1Wn)−1Wn

∣∣
≡− 1

2
exp

{
− α0

1− θ0

} n∑
i=1

n∏
j=1

|uj,n|−2(φ0(In−θ0Wn)−1Wn)ij u2
i,n −

1

2
1
′

nφ0(In − θ0Wn)−1Wnlogu
2
n

− nα0

2(1− θ0)
+ ln

∣∣In − φ0(In − θ0Wn)−1Wn

∣∣
for almost every possible value of un. Since un can take arbitrary values and Wn is invertible,

we must have the following results:

− 1

2
exp

{
− α1

1− θ1

} n∑
i=1

n∏
j=1

|uj,n|−2(φ1(In−θ1Wn)−1Wn)ij u2
i,n −

1

2
1
′

nφ1(In − θ1Wn)−1Wnlogu
2
n

≡− 1

2
exp

{
− α0

1− θ0

} n∑
i=1

n∏
j=1

|uj,n|−2(φ0(In−θ0Wn)−1Wn)ij u2
i,n −

1

2
1
′

nφ0(In − θ0Wn)−1Wnlogu
2
n

(10)

and

− nα1

2(1− θ1)
+ ln

∣∣In − φ1(In − θ1Wn)−1Wn

∣∣ ≡ − nα0

2(1− θ0)
+ ln

∣∣In − φ0(In − θ0Wn)−1Wn

∣∣ (11)

From (10), take |ui,n| = 1 for ∀i, then logu2
n = 0 and |ui,n|a = 0 for a ∈ R, then we have

α1

1− θ1
≡ α0

1− θ0
(12)

Then, take |ui,n| = 1 for ∀i 6= 1, then (1) becomes
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− 1

2
exp

{
− α1

1− θ1

}{
u2

1,n +

n∑
i=2

|u1,n|−2(φ1(In−θ1Wn)−1Wn)
i1

}
− 1

2

n∑
i=1

(
φ1 (In − θ1Wn)

−1
Wn

)
i1

log u2
1,n

≡− 1

2
exp

{
− α0

1− θ0

}{
u2

1,n +

n∑
i=2

|u1,n|−2(φ0(In−θ0Wn)−1Wn)
i1

}
− 1

2

n∑
i=1

(
φ0 (In − θ0Wn)

−1
Wn

)
i1

log u2
1,n

Since ui,n can take arbitrary non-zero value, we need to have
(
φ0(In − θ0Wn)−1Wn

)
i1

=(
φ1(In − θ1Wn)−1Wn

)
i1

for ∀i. Similarly, for ∀j, we can take |ui,n| = 1 for ∀i 6= j. By the
same argument, we need to have

(
φ0(In − θ0Wn)−1Wn

)
ij

=
(
φ1(In − θ1Wn)−1Wn

)
ij
. Thus, we

must have the following result:

φ0(In − θ0Wn)−1Wn = φ1(In − θ1Wn)−1Wn

which can be transformed to

(φ0 − φ1)Wn = (φ0θ1 − φ1θ0)W 2
n (13)

SinceWn is row-normalized,W 2
n is also a row-normalized matrix. Thus, on one hand,Wn 6= kW 2

n

for any k 6= 1. On the other hand, suppose Wn = W 2
n , (υ, ξ) is a pair of eigenvalue and eigenvector

of Wn, then we should have υξ = Wnξ = W 2
nξ = Wn (νξ) = υWnξ = υ2ξ, as ξ 6= 0, υ can only be 0

or 1. Then, trace (Wn) = rank(Wn) since they are all equal to sum of eigenvalues of Wn. However,
as wii = 0 for ∀i, trace(Wn) = 0 which obviously not equal to the rank. Thus, we can not have
Wn = W 2

n . To make sure (13) holds, the only way is to have

φ0 = φ1 and φ0θ1 = φ1θ0 (14)

By assuming φ0 6= 0, we have both φ0 = φ1 and θ0 = θ1. Then from (12), we can get α0 = α1.
Thus, we must have ψ1 = ψ0 which implies that ψ0 is the unique maximizer, i.e. it can be identified.
�

When φ0 = 0, the model can not be identified since we can only get φ1 = φ0 = 0 from (14) and
α1

1−θ1 = α0

1−θ0 from (12), but α0 and θ0 can not be separately identified. However, in this case, as
long as α1

1−θ1 = α0

1−θ0 , we actually have the same DGP. When φ0 = 0, we have

logu2
n = (In − θ0Wn)

−1
(In − θ0Wn)logε2

n + α0(In − θ0Wn)−11n

= logε2
n + α0

∞∑
k=0

θk0W
k
n1n

= logε2
n + α0

∞∑
k=0

θk01n

= logε2
n +

α0

1− θ0
1n

which implies any combination of α and θ will give the same model. But in this case, we no longer
have heteroskedasticity and any spatial correlation since u2

i,n = exp
{

α0

1−θ0

}
ε2
i,n. In the following

discussion, to avoid this case and meet compact condition, the following assumption is needed:
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Assumption 6: The parameter space Θ of ψ = (α, θ, φ)
′
is a compact subset of Θ

′
= {(α, θ, φ)

′
:

α ∈ R,−1 < θ < 1, 0 < φ < 1, 0 6 φ+ θ < 1}.
For convenience, denote Qn(ψ) ≡ E [lnLn(ψ)]. After build up identification condition, In the

limit as n tends to infinity, we assume the identification in terms of limiting information inequality
remains valid:

Assumption 7: lim infn→∞
1
n [Qn(ψ0)−Qn(ψ)] > 0 for any ψ 6= ψ0.

Corollary 1:
For the ARCH-like model, i.e. θ0 ≡ 0 case, the model can be identified when φ0 = 0.
Proof:
When θ0 ≡ 0 , recall the proof for Theorem 3, we can get α0 = α1 directly, and also

(φ0 − φ1)Wn = (φ0 − φ1)W 2
n

By the discussion on W 2
n , this equation will only hold when φ0 = φ1 for any φ0 ∈ [0, 1). Thus,

the model can be identified when φ0 = 0. �

3.4 α−mixing Property of Two Induced Variables
In this section, we are going to do some preparing work for the proof of consistency. In Section
2.2, we prove {ui,n}i∈Dn is an α−mixing spatial process with some particular upper bond of the
mixing coefficient under Assumption 1 to Assumption 4. Due to the high non-linear structure of
our log-likelihood function, it is not enough to build up asymptotic theory based on the property
of {ui,n}i∈Dn itself. Define the following two variables:

vi,n (ψ;un) =
(

(In − θWn)
−1
Wnlogu

2
n

)
i,n

κi,n(ψ;un) = exp

{
− α

1− θ

}
u2
i,n

n∏
j=1

|uj,n|
−2(φ(In−θWn)−1Wn)

ij

which are contained in the log-likelihood function. The remaining part of this section is to prove
the jointly mixing of {vi,n (ψ;un)}i∈Dn and {κi,n (ψ;un)} , and also derive the upper bond of their
α−mixing coefficients under Assumption 1 to Assumption 4.

Let en = Wnlogu
2
n, then we have(

ei,n
lnu2

i,n

)
=

n∑
j=1

(
wij,n

0

)
lnu2

j,n +

(
0
1

)
lnu2

i,n

Recall that for any Q ⊂ Dn, s > 0, denote Qs = {i ∈ Dn : d(i, Q) < s}, i.e. the neighbor of Q
with their distance less than s. Under Assumption 3, since wij,n = 0 when dij > d̄0,(

ei,n
lnu2

i,n

)
=

∑
j∈{i}d̄0

(
wij,n

0

)
lnu2

j,n +

(
0
1

)
lnu2

i,n

∀ U, V ⊆ Dn, |U | 6 k, |V | 6 l, when d (U, V ) > r > 3d̄0, by Jenish and Prucha (2009), as∣∣{j ∈ Dn : dij 6 d̄0

}∣∣ 6 Cd
(
3d̄0

)d, where Cd is a positive finite constant. then we have∣∣∣U d̄0

∣∣∣ 6 |U |Cd (3d̄0

)d
6 kCd

(
3d̄0

)d
17



∣∣∣V d̄0

∣∣∣ 6 |V |Cd (3d̄0

)d
6 lCd

(
3d̄0

)d
For i ∈ U , we have σ

({
lnu2

j,n : j ∈ {i}d̄0

})
⊆ σ

({
lnu2

j,n : j ∈ U d̄0

})
. Thus, ∀A ∈ σ

({
(ei,n, lnui,n)

′}
i∈U

)
,

it implies A ∈ σ
({

lnu2
j,n : j ∈ U d̄0

})
. Similarly, For i ∈ V , we have σ

({
lnu2

j,n : j ∈ {i}d̄0

})
⊆

σ
({

lnu2
j,n : j ∈ V d̄0

})
. Thus, ∀B ∈ σ

({
(ei,n, lnui,n)

′}
i∈V

)
, it impliesB ∈ σ

({
lnu2

j,n : j ∈ V d̄0

})
.

Also, ∀i ∈ U d̄0 , j ∈ V d̄0 , dij > r − 2d̄0. Thus, when r > 3d̄0, d
(
U d̄0 , V d̄0

)
> r

3 , we have

α
(e,lnu)
k,l (r) = sup

U,V⊆Dn
{αn(U, V ) : |U | 6 k, |V | 6 l, d(U, V ) > r}

6 sup
U d̄0 ,V d̄0⊆Dn

{
αn(U d̄0 , V d̄0) : |U d̄0 | 6 kCd

(
3d̄0

)d
, |V d̄0 | 6 lCd

(
3d̄0

)d
, d(U d̄0 , V d̄0) >

r

3

}
= α

(lnu)

kCd(3d̄0)
d
,lCd(3d̄0)

d

(r
3

)
6 C3Cd

(
3d̄0

)d
min(k, l)(

1

3d−1
rd−1ξr/d̄0)1/3

≡ C
′

3 min(k, l)(
1

3d−1
rd−1ξr/d̄0)1/3

As r →∞, α(e,lnu)
k,l (r)→ 0 as ξ < 1. Thus,

{(
ei,n, lnu

2
i,n

)′}
i∈Dn

is α−mixing.

Let vn = (v1,n, · · · , vn,n)
′
, log κ =

(
lnκ2

1,n, · · · , lnκ2
n,n

)′
, we have

vn = (In − θWn)
−1
Wn log u2

n = (In − θWn)
−1
en

log κn = (In − θWn)
−1

[In − (θ + φ)Wn] log u2
n − α (In − θWn)

−1
1n

then we can write down

(
vi,n(ψ)

lnκi,n(ψ)

)
=

n∑
j=1

 (In − θWn)
−1
ij,n 0

0
(

(In − θWn)
−1

[In − (θ + φ)Wn]
)
ij,n

( ej,n
lnu2

j,n

)

−
(

0

α (In − θWn)
−1
ij,n

)
=

n∑
j=1

(
A1,ij(ψ) 0

0 A2,ij(ψ)

)(
ej,n

lnu2
j,n

)
+

(
0

αi(ψ)

)

Let ιi,n(ψ) = (vi,n (ψ) , lnκi,n (ψ))
′
, Ãij =

(
A1,ij (ψ) 0

0 A2,ij (ψ)

)
, In =

(
ι
′

1,n, · · · , ι
′

n,n

)′
,

Ã =

 Ã11 · · · Ã1n

...
. . .

...
Ãn1 · · · Ãnn

, ε̃j,n =
(
ej,n, lnu

2
j,n

)′
, ε̃ =

(
ε̃
′

1,n, · · · , ε̃
′

n,n

)′
, α̃i,n = (0, αi (ψ))

′
, α̃n =

(
α̃
′

1,n, · · · , α̃
′

n,n

)′
, then
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In = Ãε̃n + α̃n

Similar to the proof in Section 2.2, Ã can be written as

Ã = Tln · · ·T2T1

(
A1 0
0 A2

)
T1T2 · · ·Tln

where Tln is the same type of matrix defined as before.
With Assumption 3 and Assumption 5, we have

sup
n
‖A1‖∞ = sup

n

∥∥∥(In − θWn)
−1
∥∥∥
∞

6
1

1− |θ|

sup
n
‖A2‖∞ 6 sup

n

∥∥∥(In − θWn)
−1
∥∥∥
∞

sup
n
‖In − (θ + φ)Wn‖∞ 6

1 + θ + φ

1− |θ|
For the spatial GARCH-like case and the spatial ARCH-like case, due to different property

of (In − θWn)
−1

[In − (θ + φ)Wn] when θ = 0 or not, we need to discuss the α−mixing property
separately for
Case 1: θ 6= 0 (GARCH-like)

|A1,ij | =
∞∑

l=bdij/d̄0c
θl (Wn)

l
ij 6

∞∑
l=bdij/d̄0c

θl 6
θbdij/d̄0c

1− θ

|A2,ij | =
∞∑

l=bdij/d̄0c
θl (Wn)

l
ij − (φ+ θ)

∞∑
l=bdij/d̄0c−1

θl (Wn)
l+1
ij

6
∞∑

l=bdij/d̄0c
θl + (φ+ θ)

∞∑
l=bdij/d̄0c−1

θl+1

6
1

1− θ

(
1 +

φ+ θ

θ

)
θbdij/d̄0c

Thus, by Lemma A.1 in Jenish and Prucha (2009),

sup
n
‖A1‖1 = sup

j∈Dn,n

n∑
j=1

|A1,ij |

6 sup
j,n

∞∑
l=0

∑
i∈Dn:ld̄0<dij<(1+l)d̄0

|A1,ij |

6
∞∑
l=0

C1(l + 1)d−1 θ
bdij/d̄0c

1− θ
<∞
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sup
n
‖A2‖1 = sup

j∈Dn,n

n∑
j=1

|A2,ij |

6 sup
j,n

∞∑
l=0

∑
i∈Dn:ld̄0<dij<(1+l)d̄0

|A2,ij |

6
∞∑
l=0

C1(l + 1)d−1 1

1− θ

(
1 +

φ+ θ

θ

)
θbdij/d̄0c <∞

Similarly, we can prove supn
∥∥A−1

1

∥∥
1
<∞, supn

∥∥A−1
2

∥∥
1
<∞. Also, we have lims→∞ supn supj∈Q

∑
i∈Dn\Qs

∣∣∣(A−1
1

)
ij

∣∣∣ =

0 and lims→∞ supn supj∈Q
∑
i∈Dn\Qs

∣∣∣(A−1
2

)
ij

∣∣∣ = 0 based on Assumption 3. Thus, supn

∥∥∥Ã∥∥∥
1
<∞,

supn

∥∥∥Ã−1
∥∥∥

1
<∞, and lims→∞ supn supj∈Q;q=1,2

[∑
r∈Dn\Qs;t=1,2

∣∣∣∣(Ã−1
)
tq,rj

∣∣∣∣] = 0.

Let C
′′

= max
{

1
1−θ ,

1
1−θ

(
1 + φ+θ

θ

)}
, then we have

sup
16p62,16q62,n

∣∣∣Ãpq,ij,n∣∣∣ 6 sup
n
{|A1,ij | , |A2,ij |} 6 C

′′
θbdij/d̄0c

where C
′′
θbdij/d̄0c is a non-increasing function of dij .

Also, the α−mixing coefficient of (ei,n, lnui,n)
′
satisfies that

∞∑
r=1

rd−1α
(e,lnu)
1,1 (r)δ/(2+δ) 6

b3d̄0c∑
r=1

rd−1α
(e,lnu)
1,1 (r)δ/(2+δ) +

∞∑
r=b3d̄0c

rd−1(
1

3d−1
rd−1ξr/d̄0)δ/3(2+δ)

=

b3d̄0c∑
r=1

rd−1α
(e,lnu)
1,1 (r)δ/(2+δ) +

∞∑
r=1

(
1

3

)d−1

r[1+δ/3(2+δ)](d−1)ξrδ/3(2+δ)d̄0 <∞

for any positive δ since ξ < 1.
Since we proved supn,i∈Dn E

∣∣lnu2
i,n

∣∣p <∞ for any positive integer p, we have

E |ei,n|p = E

∣∣∣∣∣∣
n∑
j=1

wij,n lnu2
j,n

∣∣∣∣∣∣
p

6 (‖Wn‖∞)
p

sup
n,i∈Dn

E
∣∣lnu2

i,n

∣∣p
6 sup
n,i∈Dn

E
∣∣lnu2

i,n

∣∣p <∞
thus ‖ε̃i,n‖Lp = supi∈Dn,n max

{
E |ei,n|p , E

∣∣lnu2
i,n

∣∣p} < ∞. Since the density of εi,n is absolute
continuous on R, and the mapping from un and εn is bijection, we can easily get absolute continuity
of the density function of ẽi,n. By Lemma A.1 in Jenish and Prucha (2009), |{j ∈ Dn : dij 6 l}| 6
Cdl

d for all l > 1 for some constant Cd > 0.Thus, based on Theorem 2 in Xu and Lee (2019), the
α−mixing coefficient of ιi,n satisfies:
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α
(ι)
k,l (r) 6 CP2

min (k, l)

(
C
′′
θbr/3d̄0c

[
1

1− |θ|
+

1 + θ + φ

1− |θ|

])1/3

+ α
(e,lnu)

Cdk(r/3)d,Cdl(r/3)d

(r
3

)
6 C

′′′
θbr/3d̄0c/3 + C

′

3 min
{
Cdk(r/3)d, Cdl(r/3)d

}
(

1

32(d−1)
rd−1ξr/d̄0)1/3

= C
′′′
θbr/3d̄0c/3 + C

′

3 min {k, l}Cd3−
7
3 r

13
3 ξr/3d̄0 (15)

for r > 9d̄0 where CP2
and C

′′′
are finite constants depend on θ and φ.

For any k and l, we have limr→∞ α
(ι)
k,l (r) = 0. Thus, vi,n (ψ) and lnκi,n (ψ) are jointly α−mixing.

Case 2: θ = 0 (ARCH-like)
When θ = 0, we have

vn(ψ) = log u2
n = en

log κn = (In − φWn) log u2
n − α1n

Then, the matrices A1 and A2 becomes simpler: A1 = In and A2 = In−φWn. Properties of A1

are easy to see. For A2, |A2,ij | = 0 when dij > d̄0. By Lemma A.1 in Jenish and Prucha (2009),
we have

sup
n
‖A2‖1 6 1 + φ sup

n

n∑
i=1

wij,n

6 1 + φ
∑

i∈Dn:d(i,j)6d̄0

wij,n

6 1 + φCdd̄
d
0 <∞

Then, we have

sup
16p62,16q62,n

∣∣∣Ãpq,ij,n∣∣∣ =

{
1 dij 6 d̄0

0 dij > d̄0

≡ g (dij)

sup
i∈Dn,n

∑
j∈Dn\Qs

g (dij) = 0 when s > d̄0

With all other results similar to GARCH-like case, for r > 9d̄0, we have

α
(ι)
k,l (r) 6 α

(e,lnu)

Cdk(r/3)d,Cdl(r/3)d

(r
3

)
6 min

{
Cdk(r/3)d, Cdl(r/3)d

}
(

1

32(d−1)
rd−1ξr/d̄0)1/3

= min {k, l}Cd3−
7
3 r

13
3 dξr/3d̄0 (16)

For any k and l, we have limr→∞ α
(ι)
k,l (r) = 0. Thus, vi,n (ψ) and lnκi,n (ψ) are jointly α−mixing.
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3.5 Consistency of the MLE
The next step is to discuss the consistency of estimators. Let

qn(ψ) =
1

n
lnLn(ψ)

= −1

2
ln(2π)− 1

2n
exp

{
− α

1− θ

} n∑
i=1

n∏
j=1

|uj,n|
−2(φ(In−θWn)−1Wn)

ij u2
i,n −

α

2(1− θ)

− φ

2n
1
′

n (In − θWn)
−1
Wnlogu

2
n +

1

n
ln |In − (θ + φ)Wn| −

1

n
ln |In − θWn|

To proof consistency, we can prove the uniform convergence in probability of qn(ψ) : supψ∈Θ |qn (ψ)− Eqn (ψ)| =
op(1). Denote the following functions:

q1,n (ψ) = − α

2(1− θ)
+

1

n
ln |In − (θ + φ)Wn| −

1

n
ln |In − θWn| (17)

q2,n (ψ) =
φ

n
1
′

n (In − θWn)
−1
Wnlogu

2
n (18)

q3,n(ψ) =
1

n
exp

{
− α

1− θ

} n∑
i=1

n∏
j=1

|uj,n|
−2(φ(In−θWn)−1Wn)

ij u2
i,n (19)

It is easy to see that the uniform convergence in probability of qn(ψ) follows from the uni-
form convergence in probability of the three functions above. The easiest part is q1,n since it
is a non-stochastic function of ψ. Thus, for all n, we should have q3,n(ψ) = Eq3,n(ψ). Thus,
supψ∈Θ |q3,n (ψ)− Eq3,n (ψ)| = 0 which implies we always have the uniform convergence of q3,n(ψ).
So, the key point is to show uniform convergence in probability of q2,n(ψ) and q3,n(ψ). Following
Newey (1991), we are going to prove point-wise convergence and conditions in Corollary 3.1 to show
uniform convergence.

Uniform convergence of q2,n(ψ):
For q2,n(ψ), for any ψ, we have

|q2,n(ψ)− Eq2,n(ψ)|

=

∣∣∣∣ 1nφ1
′

n (In − θWn)
−1
Wn

(
logu2

n − Elogu2
n

)∣∣∣∣
=

∣∣∣∣∣∣ 1nφ
n∑
j=1

(
(In − θWn)

−1
Wnlogu

2
n − E (In − θWn)

−1
Wnlogu

2
n

)
i,n

∣∣∣∣∣∣
6

∣∣∣∣∣ 1n
n∑
i=1

((
(In − θWn)

−1
Wnlogu

2
n

)
i,n
− E

(
(In − θWn)

−1
Wnlogu

2
n

)
i,n

)∣∣∣∣∣
≡

∣∣∣∣∣ 1n
n∑
i=1

(vi,n (ψ;un)− Evi,n (ψ;un))

∣∣∣∣∣
since φ ∈ (0, 1).

By Assumption 3 and 5, we have
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∣∣∣∣((In − θWn)
−1
Wn

)
ij

∣∣∣∣ =

∣∣∣∣∣∣∣
∞∑

l=bdij/d̄0c
[θlW l+1

n ]ij

∣∣∣∣∣∣∣
6

∞∑
l=bdij/d̄0c

∥∥θlW l+1
n

∥∥
∞

=

∞∑
l=bdij/d̄0c

|θ| θl

=
|θ|bdij/d̄0c

1− |θ|

Recall Lemma A.1 in Jenish and Prucha (2009), we can get

sup
n

∥∥∥(In − θWn)
−1
Wn

∥∥∥
1

= sup
j∈Dn,n

n∑
i=1

∣∣∣∣((In − θWn)
−1
Wn

)
ij

∣∣∣∣
= sup
j∈Dn,n

∞∑
l=0

∑
i∈Dn:ld̄0<dij<(1+l)d̄0

∣∣∣∣((In − θWn)
−1
Wn

)
ij

∣∣∣∣
6
∞∑
l=0

C1(l + 1)d−1 θl

1− θ
= C5(θ) <∞

Also, from Assumption 5, we have

∥∥∥(In − θWn)
−1
Wn

∥∥∥
∞

=

∥∥∥∥∥
∞∑
l=0

θlW l+1
n

∥∥∥∥∥
∞

=

∞∑
l=0

∣∣θl∣∣ ∥∥W l+1
n

∥∥
∞

=
1

1− |θ|

Since we have the following equation:

logu2
n = [In − (φ0 + θ0)Wn]−1(In − θ0Wn)logε2

n + α0[In − (φ0 + θ0)Wn]−11n

= Gn(φ0, θ0)logε2
n +

α0

1− φ0 − θ0
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By Lemma A.3 in Xu and Lee (2015b) , for any p ∈ N+, as ‖Gn(φ0, θ0)‖∞ = 1+|θ0|
1−φ0−θ0 , we have

E
∣∣log u2

i,n

∣∣p = E

∣∣∣∣∣∣
n∑
j=1

(Gn(φ0, θ0))ij log ε2
j,n +

α0

1− φ0 − θ0

∣∣∣∣∣∣
p

6 E


 n∑
j=1

∣∣∣(Gn(φ0, θ0))ij log ε2
j,n

∣∣∣
+

∣∣∣∣ α0

1− φ0 − θ0

∣∣∣∣

p

= E

p∑
r=0

(
p
r

) n∑
j=1

∣∣∣(Gn(φ0, θ0))ij log ε2
j,n

∣∣∣
r ∣∣∣∣ α0

1− φ0 − θ0

∣∣∣∣p−r

=

p∑
r=0

(
p
r

) ∣∣∣∣ α0

1− φ0 − θ0

∣∣∣∣p−r E
 n∑
j=1

∣∣∣(Gn(φ0, θ0))ij log ε2
j,n

∣∣∣
r

6
p∑
r=0

(
p
r

) ∣∣∣∣ α0

1− φ0 − θ0

∣∣∣∣p−r ( 1 + |θ0|
1− φ0 − θ0

)r
E
(∣∣log ε2

j,n

∣∣r)
<∞

Then we have

|vi,n (ψ, un)| =

∣∣∣∣∣∣
n∑
j=1

(
(In − θWn)

−1
Wn

)
ij

log u2
j,n

∣∣∣∣∣∣
6
∥∥∥(In − θWn)

−1
Wn

∥∥∥
∞

sup
j∈Dn

∣∣log u2
j,n

∣∣
=

1

1− |θ|
sup
j∈Dn

∣∣log u2
j,n

∣∣
Thus, we also have supΘ supn supi∈Dn E |vi,n|

p
< ∞ for ∀p ∈ N+, which indicates uniform

integrability:

lim
k→∞

sup
n

sup
i∈Dn

E
[
|vi,n(ψ;un)| 1(|vi,n(ψ;un)|>k)

]
= 0

Recall that the results (15) and (16) , as mixing property preserves under measurable transfor-
mation, we have
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∞∑
m=1

md−1αv1,1(m) 6

b9d̄0c∑
m=1

mᾱv1,1(m) +

∞∑
m=b9d̄0c+1

mᾱv1,1(m)

6

b9d̄0c∑
m=1

m+ C
′′′

∞∑
m=b9d̄0c+1

mθbr/3d̄0c/3

+

∞∑
m=b9d̄0c+1

mC
′

3Cd3
− 7

3m
13
3 ξr/3d̄0

6 m
⌊
9d̄0

⌋
+ C

′′′
∞∑

m=b9d̄0c+1

mθr/9d̄0

+

∞∑
m=b9d̄0c+1

C
′

3Cd3
− 7

3m
16
3 ξr/3d̄0 <∞ (20)

when θ 6= 0 and

∞∑
m=1

md−1αv1,1(m) 6

b9d̄0c∑
m=1

mᾱv1,1(m) +

∞∑
m=b9d̄0c+1

mᾱv1,1(m)

6 m
⌊
9d̄0

⌋
+

∞∑
m=b9d̄0c+1

Cd3
− 7

3m
16
3 ξr/3d̄0 <∞ (21)

when θ = 0.
By Theorem 3 in Jenish and Prucha (2009), we have

1

n

n∑
i=1

(vi,n − Evi,n)
L1→ 0

Thus, q2,n (ψ)−Eq2,n (ψ)
L1→ 0 directly follows from the LLN above. Thus, we get the point-wise

convergence of q2,n(ψ).
For ∀ψ,ψ′ ∈ Θ, as φ,φ

′ ∈ (0, 1)
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∣∣∣q2,n(ψ)− q2,n(ψ
′
)
∣∣∣

=

∣∣∣∣ 1nφ1
′

n (In − θWn)
−1
Wnlogu

2
n −

1

n
φ
′
1
′

n

(
In − θ

′
Wn

)−1

Wnlogu
2
n

∣∣∣∣
6

∣∣∣∣ 1n (φ− φ′) 1
′

n (In − θWn)
−1
Wnlogu

2
n

∣∣∣∣
+

∣∣∣∣∣φ
′

n

[
1
′

n (In − θWn)
−1
Wn − 1

′

n

(
In − θ

′
Wn

)−1

Wn

]
logu2

n

∣∣∣∣∣
6
∣∣∣φ− φ′ ∣∣∣ 1

n

n∑
i=1

|vi,n (ψ;un)|+ 1

n

n∑
i=1

∣∣∣vi,n (ψ;un)− vi,n
(
ψ
′
;un

)∣∣∣
By uniform integrability of vi,n, we have supn supi∈N E |vi,n (ψ;un)| 6 C7 (ψ,ψ0) which is a

positive constant depend on ψ and ψ0, thus 1
n

∑n
i=1E |vi,n (ψ;un)| = O(1). Focused on the second

term in the inequality above, we have

∣∣∣vi,n (ψ;un)− vi,n
(
ψ
′
;un

)∣∣∣
=

∣∣∣∣∣∣
n∑
j=1

(
(In − θWn)

−1
Wn

)
ij

log u2
i,n −

n∑
j=1

((
In − θ

′
Wn

)−1

Wn

)
ij

log u2
j,n

∣∣∣∣∣∣
6

n∑
j=1

∣∣∣∣∣((In − θWn)
−1
Wn

)
ij
−
((

In − θ
′
Wn

)−1

Wn

)
ij

∣∣∣∣∣ ∣∣log u2
j,n

∣∣
=

n∑
j=1

∣∣∣∣∣
n∑
l=0

[
θl −

(
θ
′
)l] (

W l
n

)
ij

∣∣∣∣∣ ∣∣log u2
j,n

∣∣
6

n∑
j=1

∣∣∣∣∣
n∑
l=0

[
θl −

(
θ
′
)l]∣∣∣∣∣ ∣∣log u2

j,n

∣∣
=

∣∣∣∣ 1

1− θ
− 1

1− θ′
∣∣∣∣ n∑
j=1

∣∣log u2
j,n

∣∣
From uniform integrability of log u2

j,n, by the same argument for vi,n, we have 1
n

∑n
i=1 |Evi,n (ψ;un)| =

O(1). Thus, we can further get
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∣∣∣q2,n(ψ)− q2,n(ψ
′
)
∣∣∣

6
∣∣∣φ− φ′ ∣∣∣ 1

n

n∑
i=1

|vi,n (ψ;un)|+ 1

n

n∑
i=1

∣∣∣vi,n (ψ;un)− vi,n
(
ψ
′
;un

)∣∣∣
6
∣∣∣φ− φ′ ∣∣∣ 1

n

n∑
i=1

|vi,n (ψ;un)|+
∣∣∣∣ 1

1− θ
− 1

1− θ′
∣∣∣∣ 1

n

n∑
j=1

∣∣log u2
j,n

∣∣
6

(∣∣∣φ− φ′ ∣∣∣+

∣∣∣∣∣ θ − θ′

(1− θ) (1− θ′)

∣∣∣∣∣
) 1

n

n∑
i=1

|vi,n (ψ;un)|+ 1

n

n∑
j=1

∣∣log u2
j,n

∣∣
6
(∣∣∣φ− φ′ ∣∣∣+ M̃

∣∣∣θ − θ′ ∣∣∣)
 1

n

n∑
i=1

|vi,n (ψ;un)|+ 1

n

n∑
j=1

∣∣log u2
j,n

∣∣
≡h1

(∣∣∣ψ − ψ′ ∣∣∣)B1 (un)

whereM̃ = supψ,′ψ∈Θ
1

(1−θ)(1−θ′)
. Then we have EB (un) = 1

n

∑n
i=1E |vi,n (ψ;un)|+ 1

n

∑n
j=1E

∣∣log u2
j,n

∣∣ =

O(1)+O (1) = O (1) uniformly inΘ, and limψ−ψ′→0 h1

(∣∣∣ψ − ψ′ ∣∣∣) = limψ−ψ′→0

(∣∣∣φ− φ′ ∣∣∣+ M̃
∣∣∣θ − θ′ ∣∣∣) =

0. The By Corollary 3.1, combined with the point-wise convergence and compact parameter space,
we have Eq2,n(ψ) is equicontinuous and uniform convergence of q2,n (ψ): supθ∈Θ |q2,n (ψ)− Eq2,n (ψ)| =
op (1).
Uniform Convergence of q3,n (ψ) :
Define the following function for ∀i:

κi,n(ψ;un) = exp

{
− α

1− θ

}
u2
i,n

n∏
j=1

|uj,n|
−2(φ(In−θWn)−1Wn)

ij

With the true parameter ψ0, κi,n(ψ0) = ε2
i,n by recalling the equation (3). Given arbitrary ψ, we

can get the following equation by transform the equation (2):

logκn = (In − θWn)
−1

[In − (θ + φ)Wn] logu2
n − α (In − θWn)

−1
1n

= (In − θWn)
−1

[In − (θ + φ)Wn] logu2
n −

α

1− θ
1n

= (In − θWn)
−1

[In − (θ + φ)Wn] [In − (φ0 + θ0)Wn]−1(In − θ0Wn)logε2
n

+ α0 (In − θWn)
−1

[In − (θ + φ)Wn] [In − (φ0 + θ0)Wn]−11n −
α

1− θ
1n

≡ K̃n (ψ0, ψ) logε2
n + h̃n (ψ0, ψ)

where logκn = (log κ1,n(ψ), · · · , log κn,n (ψ))
′
. By transforming the equation above, we have

κi,n = exp

 n∑
j=1

(
K̃n (ψ0, ψ)

)
ij

log ε2
j,n + h̃i,n (ψ0, ψ)


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Since K̃n = (In − θWn)
−1

[In − (θ + φ)Wn] [In − (φ0 + θ0)Wn]−1(In − θ0Wn), we have

∥∥∥K̃n

∥∥∥
∞

6
∥∥∥(In − θWn)

−1
∥∥∥
∞

∥∥∥(In − (θ + φ)Wn)
−1
∥∥∥
∞

∥∥∥(In − (φ0 + θ0)Wn)
−1
∥∥∥
∞

∥∥∥(In − θ0Wn)
−1
∥∥∥
∞

=
1

1− |θ|
(1− (θ + φ))

1

1− (θ0 + φ0)
(1− |θ0|)

=
1− |θ0|
1− |θ|

1− θ − φ
1− θ0 − φ0

And also we have

α0 (In − θWn)
−1

[In − (θ + φ)Wn] [In − (φ0 + θ0)Wn]−11n

=α0 (In − θWn)
−1

[In − (θ + φ)Wn]

∞∑
l=0

(φ0 + θ0)
l
W l
n1n

=
α0

1− φ0 − θ0

( ∞∑
l=1

θlW l
n − (θ + φ)

∞∑
l=0

θlW l+1
n

)
1n

=
α0

1− φ0 − θ0

1− θ − φ
1− θ

1n

Then we have

sup
n

sup
i∈Dn

κi,n = exp

{
α0

1− φ0 − θ0

1− θ − φ
1− θ

− α

1− θ

}
sup
n

sup
i∈Dn

exp

 n∑
j=1

(
K̃n (ψ0, ψ)

)
ij

log ε2
j,n


6 exp

{
α0

1− φ0 − θ0

1− θ − φ
1− θ

− α

1− θ

}
sup
n

sup
i∈Dn

exp
(∥∥∥K̃n (ψ0, ψ)

∥∥∥
∞

∣∣log ε2
i,n

∣∣)
6 exp

{
α0

1− φ0 − θ0

1− θ − φ
1− θ

− α

1− θ

}
sup
n

sup
i∈Dn

exp

(
1− |θ0|
1− |θ|

1− θ − φ
1− θ0 − φ0

∣∣log ε2
i,n

∣∣)
For ∀k ∈ N+ and random variable X, we have

E
(
exp

{
k
∣∣logX2

∣∣})
=

∫
R

exp
{
k
∣∣log x2

∣∣} dF (x)

=

∫
{|x|>1}

exp
{
k log x2

}
dF (x) +

∫
{|x|<1}

exp
{
−k log x2

}
dF (x)

=

∫
{|x|>1}

x2kdF (x) +

∫
{|x|<1}

1

x2k
dF (x)

Then, we can build up an upper bound of Eκki,n:
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sup
ψ∈Θ

sup
n

sup
i∈Dn

Eκki,n

6 sup
ψ∈Θ

exp

{
α0

1− φ0 − θ0

1− θ − φ
1− θ

− α

1− θ

}
sup
n

sup
i∈Dn

E exp

(
1− |θ0|
1− |θ|

1− θ − φ
1− θ0 − φ0

∣∣log ε2
i,n

∣∣)
6 sup
ψ∈Θ

exp

{
α0

1− φ0 − θ0

1− θ − φ
1− θ

− α

1− θ

}
sup
n

sup
i∈Dn
{
∫
{|x|>1}

x2k
1−|θ0|
1−|θ|

1−θ−φ
1−θ0−φ0 dFε (x)

+

∫
{|x|<1}

x−2k
1−|θ0|
1−|θ|

1−θ−φ
1−θ0−φ0 dFε (x)}

To make sure this upper bond exist, we need an additional assumption for εi,n:
Assumption 8:
The distribution function of εi,n, Fε (x), satisfies the following condition∫

{|x|<1}
x−kdFε (x) <∞

for any positive integer k.
This assumption seems contradict to the Normality assumption, since N (0, 1) does not meet this

requirement. In fact, any distribution with non-zero density at x = 0 would violate Assumption 8.
But it does not mean the asymptotic of the estimator based on this assumption is useless. In fact, for
any finite sample without zero observation, this model can still be applied. The detailed discussion
will be showed in Section 4.1, where you can see this estimator still has a good performance when
the epsilon is Normal.

Combined with other assumptions, we have supψ∈Θ supn supi∈Dn Eε
k
i,n < ∞. Then, we have

uniform integrability of κi,n (ψ;un).

lim
k→∞

sup
n

sup
i∈Dn

E
[
|κi,n(ψ;un)| 1(|εi,n(ψ;un)|>k)

]
= 0

Since the upper bond of the α−mixing coefficient of {κi,n (ψ)}i∈Dn is the same as {vi,n (ψ)}i∈Dn
, the inequality (20) and (21) also hold for {κi,n (ψ)}i∈Dn . Thus, by Theorem 3 in Jenish and
Prucha (2009),

q3,n (ψ)− Eq3,n (ψ) =
1

n

n∑
j=1

(κi,n(ψ;un)− Eκi,n (ψ;un))
L1→ 0

Thus, we have the point-wise convergence for q3,n (ψ).
For ∀ψ,ψ′ ∈ Θ, let the maximum value of exp

{
− α

1−θ

}
be M , then

∣∣∣q3,n(ψ)− q3,n(ψ
′
)
∣∣∣

=
1

n

∣∣∣∣∣
n∑
i=1

κi,n(ψ;un)−
n∑
i=1

κi,n(ψ
′
;un)

∣∣∣∣∣
6

1

n

n∑
i=1

∣∣∣κi,n(ψ;un)− κi,n(ψ
′
;un)

∣∣∣
29



Since we have

∣∣∣κi,n(ψ;un)− κi,n(ψ
′
;un)

∣∣∣
=

∣∣∣∣∣∣u2
i,n

 n∏
j=1

|uj,n|
−2(φ(In−θWn)−1Wn)

ij −
n∏
j=1

|uj,n|
−2

(
φ
′(
In−θ

′
Wn

)−1
Wn

)
ij

∣∣∣∣∣∣
=

∣∣∣∣∣∣u2
i,n

n∏
j=1

|uj,n|
−2(φ(In−θWn)−1Wn)

ij

1−
n∏
j=1

|uj,n|
2(φ(In−θWn)−1Wn)

ij
−2

(
φ
′(
In−θ

′
Wn

)−1
Wn

)
ij

∣∣∣∣∣∣
=

∣∣∣∣∣∣κi,n(ψ;un)

1−
n∏
j=1

|uj,n|
2
∑∞
l=0

(
φθl−φ

′(
θ
′)l)

(W l
n)
ij

∣∣∣∣∣∣
6

∣∣∣∣∣∣
1−

n∏
j=1

|uj,n|
2
∑∞
l=0

(
φθl−φ

′(
θ
′)l)

(W l
n)
ij

∣∣∣∣∣∣ |κi,n(ψ;un)|

WLOG assume φ
′
< φ and θ

′
< θ, |uj,n| > 1 for ∀n 6 mn, |uj,n| < 1 for ∀n > mn withmn ∈ [0, n],

we have

n∏
j=mn+1

|uj,n|
2
∑∞
l=0

(
φθl−φ

′
θl
)
(W l

n)
ij 6

n∏
j=1

|uj,n|
2
∑∞
l=0

(
φθl−φ

′
θl
)
(W l

n)
ij 6

mn∏
j=1

|uj,n|
2
∑∞
l=0

(
φθl−φ

′
θl
)
(W l

n)
ij

The LHS and RHS will goes to 1 as ψ
′ → ψ, then

lim
ψ′→ψ

1−
n∏
j=1

|uj,n|
2
∑∞
l=0

(
φθl−φ

′
θl
)
(W l

n)
ij

 = 0

For different situations, we can get the same conclusion by constructing upper and lower bonds
in similar ways. Also, similar to the arguments for log ui,n and zi,n, from uniform integrability of
κi,n, we can get 1

n

∑n
i=1E |κi,n(ψ;un)|. Then, we have

∣∣∣q3,n(ψ)− q3,n(ψ
′
)
∣∣∣

6
1

n

n∑
i=1

|κi,n(ψ;un)|

∣∣∣∣∣∣1−
n∏
j=1

|uj,n|
2
∑∞
l=0

(
φθl−φ

′(
θ
′)l)

(W l
n)
ij

∣∣∣∣∣∣
6

(
1

n

n∑
i=1

|κi,n(ψ;un)|

) sup
i∈Dn

∣∣∣∣∣∣1−
n∏
j=1

|uj,n|
2
∑∞
l=0

(
φθl−φ

′(
θ
′)l)

(W l
n)
ij

∣∣∣∣∣∣


≡B2 (un)h2

(∣∣∣ψ − ψ′ ∣∣∣)
where EB2 (un) = 1

n

∑n
i=1E |εi,n(ψ;un)| = O (1) uniformly in Θ and limψ−ψ′→0 h2

(∣∣∣ψ − ψ′ ∣∣∣) = 0.
By Corollary 3.1, combined with the point-wise convergence and compact parameter space, we have
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Eq3,n(ψ) is equicontinuous and uniform convergence of q3,n (ψ): supθ∈Θ |q3,n (ψ)− Eq3,n (ψ)| =
op (1). Thus, we have the consistency:

Theorem 4: Under Assumption 1-8, the MLE estimators are consistent.
Proof:
From the arguments before, we have uniform convergence of q2,n (ψ) and q3,n (ψ) defined by

(18) and (19), thus

sup
ψ∈Θ
|qn (ψ)− Eqn (ψ)| = sup

ψ∈Θ

∣∣∣∣−1

2
(q2,n (ψ)− Eq2,n (ψ))− 1

2
(q3,n (ψ)− Eq3,n (ψ))

∣∣∣∣
6

1

2

{
sup
ψ∈Θ
|q2,n (ψ)− Eq2,n (ψ)|+ sup

ψ∈Θ
|q3,n (ψ)− Eq3,n (ψ)|

}

=
1

2
op (1) +

1

2
op (1) = op (1)

Combined with the identification, compact parameter space Θ and measurability, we have consis-
tency for MLE estimators. �

Thus, we proved that consistency when does not allow direct correlations between individuals
far away form each other, i.e. Assumption 3 holds.

3.6 Asymptotic Distribution of MLE Estimators for ARCH-like Model
In this section, we derive the asymptotic distribution of MLE estimator for the spatial ARCH-like
model, which is the special case when θ0 = 0. For the general spatial GARCH-like case, there
are some difficulties to apply LLN and CLT since both the first order derivatives and the second
order derivatives would contain much more complex nonlinear terms which would be hard to discuss
their α−mixing property and uniform L2+δ integrability for some positive δ. So, here we just try
to handle an easier case when the FOC and SOC’s can be represented as measurable functions of
κi,n and vi,n, which we had proved their jointly α−mixing properties and derived the upper bond
of their mixing coefficients. There might be some other ways instead of using LLN and CLT for
mixing processes to get the asymptotic, which might solve the difficulties for general GARCH-like
case.

Recall the log-likelihood function for ARCH-like model:

lnLns(un;α, φ) = −n
2

ln(2π)− 1

2
e−α

n∑
i=1

u2
i,n

 n∏
j=1

|uj,n|−2wij

φ

− 1

2
[φ1

′

nWnlogu
2
n + nα] + ln |In − φWn|

We can get the first order derivatives of parameters:

∂ lnLns
∂α

=
1

2
e−α

n∑
i=1

u2
i,n

 n∏
j=1

|uj,n|−2wij

φ − n

2
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∂ lnLns
∂φ

= −1

2
e−α

n∑
i=1

u2
i,n

 n∏
j=1

|uj,n|−2wij

φ ln

 n∏
j=1

|uj,n|−2wij


− 1

2
1
′

nWnlogu
2
n − tr

(
(In − φWn)

−1
Wn

)
From previous proof for consistency, we defined two new variables: vi,n and εi,n. In the simplified

ARCH-like model, as θ ≡ 0, we can write them as the following:

vi,n (un) =
(
Wnlogu

2
n

)
i,n

=

n∑
j=1

wij lnu2
j,n = ln

 n∏
j=1

|uj,n|2wij


κi,n (ψ;un) = e−αu2
i,n

 n∏
j=1

|uj,n|−2wij

φ

Then, we can rewrite the first as the following:

∂ lnLns
∂α

=
1

2

n∑
i=1

κi,n −
n

2

∂ lnLns
∂φ

=
1

2

n∑
i=1

κi,nvi,n −
1

2

n∑
i=1

vi,n − tr
(

(In − φWn)
−1
Wn

)
By the results before, we have

1√
n

∂ lnLns (ψ0)

∂ψ
=

1√
n

n∑
i=1

(
1
2κi,n (ψ0)− 1

2

− 1
2κi,n (ψ0) vi,n − 1

2vi,n −
1
n tr

(
(In − φWn)

−1
Wn

) )

To get asymptotic distribution, we need the following two assumptions:
Assumption 8: ψ0 is in the interior of the parameter space Θ.
Assumption 9:
Σ0 = limn→∞Σn exists and is nonsingular, where

Σn =
1

n
V ar

(
n∑
i=1

(
1

2
κi,n (ψ0)− 1

2
,−1

2
κi,n (ψ0) vi,n −

1

2
vi,n −

1

n
tr
(

(In − φWn)
−1
Wn

))′)

Then we have the following proposition:
Proposition 1:
Under Assumption 1-9,

1√
n

n∑
i=1

(
1
2κi,n (ψ0)− 1

2

− 1
2κi,n (ψ0) vi,n − 1

2vi,n −
1
n tr

(
(In − φ0Wn)

−1
Wn

) ) d→ N (0,Σ0)

Proof:
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The asymptotic mean zero and variance matrix
∑

0 are followed by the consistency and As-
sumption 9. The key point here is to prove the joint normality. By definition of multivariate
Normal distribution, random (X,Y )

′
is multivariate Normal iff ∀a, b ∈ R, aX + bY is a Normal

random variable. Thus, from the following, we are focusing on prove the asymptotic Normality of
the following linear combination:

1√
n

n∑
i=1

{
a

[
1

2
κi,n (ψ0)− 1

2

]
+ b

[
−1

2
κi,n (ψ0) vi,n −

1

2
vi,n −

1

n
tr
(

(In − φ0Wn)
−1
Wn

)]}
,∀a, b ∈ R

As we proved before, {vi,n}i∈Dn and {κi,n}i∈Dn are jointly α−mixing with their mixing coef-
ficient satisfy inequality (16). Thus any measurable function of {vi,n, κi,n} are have α−mixing coeffi-
cients with the same upper bond , so does

{
a
[

1
2κi,n (ψ0)− 1

2

]
+ b

[
κi,n (ψ0) vi,n − vi,n − 1

n tr
(

(In − φ0Wn)
−1
Wn

)]}
i∈Dn

for ∀a, b ∈ R.
Notice that

1

n
tr
(

(In − φ0Wn)
−1
Wn

)
=

1

n
tr

( ∞∑
l=0

φl0W
l+1
n

)
=

1

n

∞∑
l=0

φl0tr
(
W l+1
n

)
6
∞∑
l=0

φl0 =
1

1− φ0

Then, we have∣∣∣∣a [1

2
κi,n (ψ0)− 1

2

]
+ b

[
−1

2
κi,n (ψ0) vi,n −

1

2
vi,n −

1

n
tr
(

(In − φ0Wn)
−1
Wn

)]∣∣∣∣
=

∣∣∣∣12aκi,n (ψ0)− 1

2
bvi,n −

1

2
bκi,n (ψ0) vi,n −

1

2
a− b

n
tr
(

(In − φ0Wn)
−1
Wn

)∣∣∣∣
6

∣∣∣∣12aκi,n (ψ0)

∣∣∣∣+

∣∣∣∣12bvi,n
∣∣∣∣+

∣∣∣∣12bκi,n (ψ0) vi,n

∣∣∣∣+
1

2
|a|+ |b|

1− φ0

≡Ã |κi,n (ψ0)|+ B̃ |vi,n|+ C̃ |κi,n (ψ0)| |vi,n|+ D̃

where Ã, B̃ ,C̃ and D̃ are finite positive constants depend on ψ0, a and b.
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Then, we have∣∣∣∣a [1

2
κi,n (ψ0)− 1

2

]
+ b

[
1

2
κi,n (ψ0) vi,n −

1

2
vi,n −

1

n
tr
(

(In − φ0Wn)
−1
Wn

)]∣∣∣∣3
6
{
Ã |κi,n (ψ0)|+ B̃ |vi,n|+ C̃ |κi,n (ψ0)| |vi,n|+ D̃

}3

=
{
Ã |κi,n (ψ0)|+ B̃ |vi,n|

}3

+
{
C̃ |κi,n (ψ0)| |vi,n|+ D̃

}3

+3
{
Ã |κi,n (ψ0)|+ B̃ |vi,n|

}2 {
C̃ |κi,n (ψ0)| |vi,n|+ D̃

}
+3
{
Ã |κi,n (ψ0)|+ B̃ |vi,n|

}{
C̃ |κi,n (ψ0)| |vi,n|+ D̃

}2

=Ã3 |κi,n (ψ0)|3 + B̃3 |vi,n|3 + 3Ã2B̃ |κi,n (ψ0)|2 |vi,n|+ 3ÃB̃2 |κi,n (ψ0)| |vi,n|2

+C̃3 |κi,n (ψ0)|3 |vi,n|3 + D̃3 + 3C̃2D̃ |κi,n (ψ0)|2 |vi,n|2 + 3C̃D̃2 |κi,n (ψ0)| |vi,n|

+3
{
Ã2 |κi,n (ψ0)|2 + 2ÃB̃ |κi,n (ψ0)| |vi,n|+ B̃2 |vi,n|2

}{
C̃ |κi,n (ψ0)| |vi,n|+ D̃

}
+3
{
Ã |κi,n (ψ0)|+ B̃ |vi,n|

}{
C̃2 |κi,n (ψ0)|2 |vi,n|2 + 2C̃D̃ |κi,n (ψ0)| |vi,n|+ D̃2

}
=Ã3 |κi,n (ψ0)|3 + B̃3 |vi,n|3 + 3Ã2B̃ |κi,n (ψ0)|2 |vi,n|+ 3ÃB̃2 |κi,n (ψ0)| |vi,n|2

+C̃3 |κi,n (ψ0)|3 |vi,n|3 + D̃3 + 3C̃2D̃ |κi,n (ψ0)|2 |vi,n|2 + 3C̃D̃2 |κi,n (ψ0)| |vi,n|

+3Ã2C̃ |κi,n (ψ0)|3 |vi,n|+ 6ÃB̃C̃ |κi,n (ψ0)|2 |vi,n|2 + 3B̃2C̃ |κi,n (ψ0)| |vi,n|2

+3Ã2D̃ |κi,n (ψ0)|2 + 6ÃB̃D̃ |κi,n (ψ0)| |vi,n|+ 3B̃2D̃ |vi,n|2

+3ÃC̃2 |κi,n (ψ0)|3 |vi,n|2 + 6ÃC̃D̃ |κi,n (ψ0)|2 |vi,n|+ 3ÃD̃ |κi,n (ψ0)|

+3B̃C̃2 |κi,n (ψ0)|2 |vi,n|3 + 6B̃C̃D̃ |κi,n (ψ0)| |vi,n|2 + 3B̃D̃2 |vi,n| (22)

Recall that |vi,n| 6 supj∈Dn
∣∣log u2

j,n

∣∣ 6 supj∈Dn C6 (ψ0)
∣∣log ε2

i,n

∣∣+
∣∣∣ α0

1−φ0

∣∣∣ and κi,n (ψ0) = ε2
i,n,

hence we have supΘ supn supi∈Dn E |vi,n|
k
< ∞ and supn supi∈Dn Eκ

k
i,n (ψ0) < ∞ for ∀k > 0.

Notice that for any positive k and l

E |κi,n (ψ0)|k |vi,n|l

=
∣∣∣Cov (|κi,n (ψ0)|k , |vi,n|l

)
+ E |κi,n (ψ0)|k E |vi,n|l

∣∣∣
6
∣∣∣Cov (|κi,n (ψ0)|k , |vi,n|l

)∣∣∣+ E |κi,n (ψ0)|k E |vi,n|l

6

√
V ar

(
|κi,n (ψ0)|k

)
V ar

(
|vi,n|l

)
+ E |κi,n (ψ0)|k E |vi,n|l

6
√
E |κi,n (ψ0)|2k E |vi,n|2l + E |κi,n (ψ0)|k E |vi,n|l

Thus, combined all the results before, denote

ωi,n (a, b) = a

[
1

2
κi,n (ψ0)− 1

2

]
+ b

[
κi,n (ψ0) vi,n −

1

2
vi,n −

1

n
tr
(

(In − φ0Wn)
−1
Wn

)]
we have supn supi∈Dn E |ωi,n|

3
< ∞ since each of the terms in (1) is finite. Thus, we have L2+δ
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uniform integrability for ωi,n (a, b), i.e.

lim
k→∞

sup
n

sup
i∈Dn

E
[
|ωi,n(ψ;un)|2+δ

1(|ωi,n(ψ;un)|>k)

]
= 0

for ∀0 < δ < 1 and ∀a, b > 0.
The next thing is to check the inequalities of α−mixing coefficient. Define ᾱk,l (r) = supn αk,l,n (r)

following Definition 1 in Jenish and Prucha (2009). Then, we have the following results hold:

∞∑
m=1

ᾱ1,1 (m)m[d(2+δ)/δ]−1

=

b9d̄0c∑
m=1

ᾱ1,1 (m)m[2(2+δ)/δ]−1 +

∞∑
m=b9d̄0c+1

ᾱ1,1 (m)m[2(2+δ)/δ]−1

6

b9d̄0c∑
m=1

m[2(2+δ)/δ]−1 +

∞∑
m=b9d̄0c+1

Cd3
− 7

3m
13
6 ξr/3d̄0m[2(2+δ)/δ]−1 <∞

∞∑
m=1

md−1ᾱk,l (m)

6

b9d̄0c∑
m=1

mᾱk,l (m) +

∞∑
m=b9d̄0c+1

mᾱk,l (m)

6

b9d̄0c∑
m=1

m+

∞∑
m=b9d̄0c+1

min {k, l}Cd3−
7
3m

19
6 ξm/3d̄0 <∞

ᾱ1,∞ (m) = Cd3
− 7

3m
19
6 ξm/3d̄0 = O

(
m−2−ε)

since limm→0
m(d−1)/3ξm/d̄0

m−d−ε
= limm→0m

4d/3−1/3+εξm/d̄0 = 0 by repeating L’Hospital Rule, where
k + l 6 4, 0 < δ < 1 and ε is some positive number. Thus, we can apply Corollary 1 and Theorem
1 in Jenish and Prucha (2009) to get the following CLT:

σ−1
n

n∑
i=1

(ωi,n (a, b)− Eωi,n (a, b))
d→ N (0, 1)

where σn is the sample standard deviation of
∑n
i=1 (ωi,n (a, b)− Eωi,n (a, b)). Thus, we proved the

asymptotic Normality of the linear combination, then 1√
n

∑n
i=1

(
1
2κi,n (ψ0)− 1

2

κi,n (ψ0) vi,n (ψ0) + 1
2vi,n −

1
n tr

(
(In − φ0Wn)

−1
Wn

) )
is jointly Normal asymptotically. With Assumption 8 and 9, we have

1√
n

n∑
i=1

(
1
2κi,n (ψ0)− 1

2

κi,n (ψ0) vi,n (ψ0)− 1
2vi,n −

1
n tr

(
(In − φ0Wn)

−1
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) ) d→ N (0, Σ0) @
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After the first order derivative, we have the following second order derivative:

∂2 lnLns
∂α2

= −1

2
e−α

n∑
i=1

u2
i,n

 n∏
j=1

|uj,n|−2wij

φ

∂2 lnLns
∂φ∂α

=
∂2 lnLns
∂α∂φ

=
1

2
e−α

n∑
i=1

u2
i,n

 n∏
j=1

|uj,n|−2wij

φ ln

 n∏
j=1

|uj,n|−2wij



∂2 lnLns
∂φ2

= −1

2
e−α

n∑
i=1

u2
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 n∏
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|uj,n|−2wij

φln

 n∏
j=1

|uj,n|−2wij


2

− tr
[
(In − φWn)

−1
Wn

]2
since

∂(In − φWn)−1Wn

∂θ
= − (In − φWn)

−1 ∂(In − φWn)

∂θ
(In − φWn)−1Wn

= (In − φWn)
−1
Wn(In − φWn)−1Wn

=
[
(In − φWn)

−1
Wn

]2
Similarly, we can use the variables vi,n and εi,n to represent them:

∂2 lnLns
∂α2

= −1

2

n∑
i=1

κi,n

∂2 lnLns
∂φ∂α

=
∂2 lnLn
∂α∂φ

= −1

2
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κi,nvi,n

∂2 lnLns
∂φ2

= −1

2
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κi,nv
2
i,n − tr

[
(In − φWn)

−1
Wn

]2
To show asymptotic Normality, we need to prove 1

n

∣∣∣∣∂2 lnLns(ψ̂n)
∂ψ∂ψ′

− E ∂2 lnLns(ψ0)

∂ψ∂ψ′
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∂2 lnLns(ψ)

∂ψ∂ψ′
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[
∂2 lnLns
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]
. To show it, we will show 1

n

∣∣∣∂2 lnLns(ψ0)

∂ψ∂ψ′
− E ∂2 lnLns(ψ0)

∂ψ∂ψ′
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− ∂2 lnLns(ψ0)

∂ψ∂ψ′
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To show 1
n

∣∣∣∂2 lnLns(ψ0)

∂ψ∂ψ′
− E ∂2 lnLns(ψ0)

∂ψ∂ψ′

∣∣∣ p−→ 0, it is sufficient to show the following three results:
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κi,n (ψ0)−
n∑
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Eκi,n (ψ0)
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1

n

∣∣∣∣∣
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κi,n (ψ0) vi,n −
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Eκi,n (ψ0) vi,n
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∣∣∣∣∣ p→ 0

From our proof for Proposition 1, we show that any measurable function of vi,n and κi,n are
α−mixing with mixing coefficient no larger than C3min(k, l)(rd−1ξr/d̄0)1/3 under Assumption 3.
Also, we show that supΘ supn supi∈Dn E |κi,n|

k |vi,n|l < ∞ for any positive integer k and l. Thus,
from weak LLN in Jenish and Prucha (2009), we have the convergence in probability of the above
three sequences. Thus, 1

n

∣∣∣∂2 lnLns(ψ0)

∂ψ∂ψ′
− E ∂2 lnLns(ψ0)

∂ψ∂ψ′

∣∣∣ p−→ 0 follows.

Next, we need to show 1
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∂ψ∂ψ′
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p→ ψ0, for the term
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dφ
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]3
is bounded. A sufficient condition is that

([
(In − φWn)

−1
Wn

]3)
ii

is uniformly bounded. This is

obvious since (In − φWn)
−1
Wn is a uniformly bounded matrix for all ψ ∈ Θ as we assumed. The

remaining thing is to show convergence for the following terms: 1
n

∑n
i=1 κi,n,

1
n

∑n
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1
n
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i,n. By taking first order derivatives, we have
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2
i,n are all Op (1) for ∀ψ ∈ Θ. Then by

Taylor expansion, as ψ̂n
p→ ψ0:
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∂
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where ψ
′
, ψ
′′
and ψ

′′′
are between ψ0 and ψ̂n. Thus, we have 1
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Theorem 6: Under Assumption 1-8,
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Proof:
By Taylor expansion, we have
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where ψ̄ is between ψ0 and ψ̂n.

As 1√
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∂ lnLns(ψ0)
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d→ N (0,Σ0) and 1
n

∣∣∣∣∂2 lnLns(ψ̂n)
∂ψ∂ψ′
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√
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− 1
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which follows the equality Eψ

(
∂2 lnLns
∂ψ∂ψ′

)
+ Eψ

(
∂ lnLns
∂ψ

∂ lnLns
∂ψ′

)
= 0. @

4 Monte Carlo Simulation for MLE

4.1 Finite Sample performance with N (0,1) Disturbances
In this section, we perform simulations to study the finite sample performance of the MLE and test
its robustness when εi,n

iid∼ N (0, 1). One thing should be noticed that N(0, 1) does not satisfy the
Assumption 8 which indicates existence of negative integer moments. The reciprocal distribution
of N(0, 1) is bimodal which does have finite positive integer moments. However, for finite sample,
as long as we do not have have any observation ui,n = 0, from equation (3) and (4), there should
also have no εi,n = 0. Then, we can pick up a small positive number εwhich is smaller than the
minimum of |εi,n| , we can always regard our sample is sampled from a distribution without any
density around zero. For example, for a sample from N (0, 1) , we can view it as a sample from a
distribution with the following density function:

fX (x) =

{
1

1−[Φ(ε)−Φ(−ε)]
1√
2π

exp
{
−x

2

2

}
|x| > ε

0 |x| < ε

The ratio of likelihood to each sample point remains the same as the N (0, 1), and this distri-
bution remains symmetric, zero mean, and existence of any positive moments. Only two changes
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we need to pay attention to: first, since we do not any density in an open neighborhood of zero,
this distribution satisfies Assumption 8; second, the variance of X is not 1 but still close to one.
From Section 3.2, as we proved, when σ2 6= 1, the only change in the DGP is α, the parameter
captures spatial heteroskedasticity and spill-over effect, φ and θ remains the same and can be cor-
rectly identified. Also, easy to see, X d→ N (0, 1) as ε→ 0. Thus, we can view the simulations with
N (0, 1) as simulations with εi,n with the density fX (x), which basically has same properties as
Normal with slightly change round point zero. Another thing we need to notice is that for different
samples we generated, the ε’s are also different. Holding this point of view, we may not observe
shrinking biases as sample size getting larger since the limiting distribution are not exactly the
same for each sample. Nevertheless, if MLE works well, it should give small bias on φ and θ. For
α, it may not be persistently close to α0, since here the proper limiting distribution may not have
σ2 = 1. But it does not affect our identification of the DGP. For real empirical applications, since
the empirical integer moments of ε̂i,n would always exist when there is no zero observations, we can
always assume the sampling distribution satisfy our Assumption 7 and 8.

In this section, we try two groups of true parameters with different values: (φ, θ, α) = (0.3, 0.4, 1)
and (φ, θ, α) = (0.7,−0.3,−1). The estimation procedure is first maximizing the concentrated log-
likelihood function to get φ̂ and θ̂, and then using the first order condition to back out α̂. The initial
value is (φ0, θ0) = (0.5, 0) for each round of simulation. For each simulation round, we generate data
starting from εi,n

i.i.d∼ N(0, 1). We can obtain the mean and standard deviation of the estimators
based on 1000 replications for each of the experiments.

The simulations use two different type of regions. In the first round, the regions are different US
counties. The spatial weighting matrix is formed using US county adjacency file which is available
at https://data.nber.org/data/county-adjacency.html. By randomly picking up n areas which is
adjacent with at least one another area picked, for each county i, we first have

wij =

{
0 j = i or j not adjacent with i

1 j adjacent with i

and then do row normalization. In the second round, it is a more unrealistic circular lake case
where each region only has two neighbors. For region i, we have wi,i+1 = wi,i−1 = 1

2 and others 0.
Also, we have w1,n = wn,1 = 1

2 . For each type of regions, we consider three different numbers of
regions n = 250, n = 750 and n = 1250. One thing should be noticed: although in Section 3, we
need uniformly bounded away from zero condition to make sure consistency, for any finite sample,
since Pr (εi,n) = 0, any sample without containing 0 in the observations automatically satisfies this
condition. Thus, in this section, we do not put such condition for any simulation exercise.

From Table 1 and Table 2, we can see the bias are shrinking when ngets larger, and the standard
deviations are getting smaller for all combination of weighting matrix and true parameters. The
median, upper quantile and lower quantile of each estimator show the similar trend.
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Table 1: GARCH-like with County Adjacency Matrix
n true φ = 0.3 θ = 0.4 α = 1 φ = 0.7 θ = −0.3 α = −1

250

mean 0.3114 0.3008 1.1241 0.6933 -0.3447 -1.1483
std 0.1019 0.3029 0.6002 0.0886 0.2268 0.4729
med 0.3079 0.3416 1.0969 0.6954 -0.3449 -1.0937
q0.25 0.2384 0.1080 0.7607 0.6356 -0.5155 -1.4433
q0.75 0.3821 0.5317 1.5688 0.7486 -0.1823 -0.8021

750

mean 0.3076 0.3540 1.0979 0.6952 -0.3138 -1.0578
std 0.0630 0.1834 0.3588 0.0556 0.1471 0.2998
med 0.3065 0.3778 1.0399 0.6944 -0.3105 -1.0392
q0.25 0.2636 0.2495 0.8553 0.6611 -0.4112 -1.2325
q0.75 0.3467 0.4798 1.2827 0.7340 -0.2149 -0.8532

1250

mean 0.3015 0.3830 1.0367 0.7007 -0.3184 -1.0467
std 0.0497 0.1361 0.2582 0.0437 0.1147 0.2259
med 0.3001 0.3930 1.0078 0.7020 -0.3160 -1.0266
q0.25 0.2656 0.2943 0.8556 0.6713 -0.3954 -1.1880
q0.75 0.3354 0.4783 1.1944 0.7321 -0.2371 -0.8888

Table 2: GARCH-like with Circular Lake Matrix
n true φ = 0.3 θ = 0.4 α = 1 φ = 0.7 θ = −0.3 α = −1

250

mean 0.3050 0.3610 1.0957 0.6935 -0.3103 -1.0385
std 0.0650 0.1698 0.3491 0.0452 0.1001 0.2489
med 0.3038 0.3678 1.0582 0.6934 -0.3154 -1.0385
q0.25 0.2632 0.2524 0.8574 0.6630 -0.3789 -1.2107
q0.75 0.3493 0.4762 1.2997 0.7251 -0.2423 -0.8732

750

mean 0.3019 0.3876 1.0288 0.6986 -0.3037 -1.0181
std 0.0417 0.1024 0.2034 0.0267 0.0529 0.1393
med 0.3020 0.3868 1.0235 0.6988 -0.3014 -1.0125
q0.25 0.2732 0.3191 0.8861 0.6800 -0.3408 -1.1042
q0.75 0.3306 0.4574 1.1548 0.7157 -0.2680 -0.9202

1250

mean 0.3004 0.3935 1.0151 0.6986 -0.3023 -1.0117
std 0.0317 0.0778 0.1521 0.0207 0.0421 0.1112
med 0.3006 0.3933 1.0158 0.6986 -0.3034 -1.0052
q0.25 0.2787 0.3389 0.9108 0.6850 -0.3298 -1.0804
q0.75 0.3227 0.4465 1.1119 0.7119 -0.2737 -0.9341

In small sample, however, the performance of the GARCH-like model does not work well. Com-
paring to the following simplified version ARCH-like model without parameter θ:

ui,n =
√
hi,nεi,n

loghi,n = φ

n∑
j=1

wij,nlogu
2
j,n + α

In Table 1 to Table 4, we can see the estimators in ARCH-like model have much smaller biases
than the GARCH-like model. When n = 100, the simulated biases of ARCH-like model are already
less than 10% for the true parameters, and show good significance (Table 3 and Table 4). However,
even when n = 200, the GARCH-type model does not have a good performance, especially for φ
and α, and the standard deviations are also very large comparing to the true values.
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Also, considering computational efficiency, estimating ARCH-type model is much faster. Run-
ning on the same computer (13.3 inch MacBook Pro 2018, i5-8259u, 16G RAM, 512SSD, MacOS
Catalina 10.15.2 ) with Matlab 2019b, both using parpool for all the four CPU cores, and using
fminbnd (golden section search and parabolic interpolation, single variable) or fmincon (internal
KKT method, multiple variables) with default options to maximize the concentrated log-likelihood
function. Since the GARCH-type model has one more parameter, it is expected to take longer time
but not so much. However, by using the internal timer of Matlab, we can see clearly that the time
for each round of simulation is much longer for GARCH-like model, at least 3 times longer. More-
over, as the sample size increases, the computational time increases much faster for the GARCH
type model.

Table 3: Running Time (GARCH-like County)
n true φ = 0.3 θ = 0.4 α = 1 φ = 0.7 θ = −0.3 α = −1

50

mean 0.3335 0.0854 1.6771 0.6745 -0.4095 -1.4188
std 0.1800 0.4451 0.9484 0.1877 0.3620 0.7931
med 0.3260 00860 1.5993 0.6836 -0.4644 -1.3379
q0.25 0.1898 -0.2762 0.8593 0.5498 -0.6733 -2.0039
q0.75 0.4570 0.4560 2.4658 0.8095 -0.1902 -0.7972
time 62.328s 57.980s

100

mean 0.3240 0.2039 1.4284 0.6895 -0.3624 -1.2232
std 0.1420 0.4039 0.8290 0.1318 0.2969 0.6247
med 0.3153 0.2321 1.2909 0.6942 -0.3771 -1.1732
q0.25 0.2203 -0.1200 0.7497 0.6111 -0.5844 -1.6720
q0.75 0.4245 0.5417 2.0365 0.7788 -0.1731 -0.7464
time 132.171s 124.714s

150

mean 0.3203 0.2413 1.3422 0.6986 -0.3719 -1.1939
std 0.1184 0.3540 0.7217 0.1113 0.2591 0.5475
med 0.3154 0.2879 1.1961 0.6959 -0.3742 -1.1157
q0.25 0.2354 -0.0174 0.7871 0.6300 -0.5571 -1.5700
q0.75 0.4010 0.5137 1.8216 0.7705 -0.1959 -0.7776
time 234.431s 218.823s

200

mean 0.3201 0.2608 1.3001 0.6941 -0.3451 -1.1505
std 0.1107 0.3284 0.6675 0.0996 0.2420 0.5150
med 0.3148 0.3036 1.1686 0.6935 -0.3456 -1.0698
q0.25 0.2432 0.0347 0.7835 0.6322 -0.5252 -1.4896
q0.75 0.3953 0.5158 1.6839 0.7624 -0.1824 -0.7619
time 377.395s 337.169s
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Table 4: Running Time (GARCH-like Circular Lake)
n true φ = 0.3 θ = 0.4 α = 1 φ = 0.7 θ = −0.3 α = −1

50

mean 0.3047 0.2373 1.4199 0.6689 -0.3560 -1.2646
std 0.1371 0.3858 0.8865 0.1099 0.2069 0.5991
med 0.3034 0.2486 1.2522 0.6683 -0.3893 -1.1953
q0.25 0.2096 -0.0803 0.7228 0.5944 -0.5073 -1.6556
q0.75 0.3967 0.5362 2.0601 0.7429 -0.2251 -0.8202
time 63.308s 63.360s

100

mean 0.3106 0.2961 1.2511 0.6859 -0.3346 -1.1346
std 0.1012 0.2813 0.6265 0.0759 0.1528 0.4179
med 0.3089 0.3102 1.1739 0.6835 -0.3491 -1.0865
q0.25 0.2416 0.1135 0.7807 0.6435 -0.4401 -1.3879
q0.75 0.3790 0.4963 1.6047 0.7372 -0.2381 -0.8435
time 133.292s 136.759s

150

mean 0.3042 0.3425 1.1424 0.6906 -0.3238 -1.0917
std 0.0865 0.2345 0.4968 0.0627 0.1234 0.3518
med 0.3089 0.3526 1.0687 0.6895 -0.3208 -1.0529
q0.25 0.2248 0.1913 0.7735 0.6484 -0.4154 -1.3096
q0.75 0.3628 0.5116 1.4312 0.7330 -0.2407 -0.8360
time 238.069s 212.059s

200

mean 0.3084 0.3519 1.1103 0.6944 -0.3232 -1.0763
std 0.0787 0.2000 0.4102 0.0500 0.1079 0.2871
med 0.3116 0.3585 1.0697 0.6949 -0.3231 -1.0546
q0.25 0.2548 0.2104 0.8035 0.6599 -0.4046 -1.2526
q0.75 0.3622 0.4982 1.3701 0.7290 -0.2535 -0.8742
time 381.433s 333.561s
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Table 5: Running Time (ARCH-like County)
n true φ = 0.2 α = 1 φ = 0.5 α = 0 φ = 0.8 α = −1

50

mean 0.1655 0.9436 0.4440 -0.1475 0.7470 -1.5948
std 0.1293 0.2224 0.1339 0.3936 0.0911 1.0189
med 0.1613 0.9546 0.4592 -0.0851 0.7641 -1.3952
q0.25 0.0496 0.8016 0.3692 -0.3777 0.7045 -2.0865
q0.75 0.2581 1.0999 0.5399 0.1321 0.8126 -0.8699
time 16.621s 16.260s 16.624s

100

mean 0.1834 0.9767 0.4744 -0.0763 0.7794 -1.2264
std 0.1013 0.1518 0.0885 0.2643 0.0498 0.5534
med 0.1863 0.9891 0.4807 -0.0356 0.7868 -1.1541
q0.25 0.1108 0.8861 0.4206 -0.2203 0.7502 -1.5346
q0.75 0.2569 1.0785 0.5404 0.1040 0.8153 -0.8220
time 19.897s 19.650s 20.038s

150

mean 0.1879 0.9818 0.4812 -0.0541 0.7849 -1.1733
std 0.0843 0.1173 0.0719 0.2084 0.0427 0.4761
med 0.1901 0.9856 0.4868 -0.0319 0.7896 -1.1361
q0.25 0.1385 0.9055 0.4403 -0.1690 0.7617 -1.4277
q0.75 0.2397 1.0622 0.5321 0.0929 0.8149 -0.8358
time 23.155s 23.082s 23.636s

200

mean 0.1888 0.9851 0.4869 -0.0382 0.7885 -1.1313
std 0.0792 0.1041 0.0628 0.1832 0.0372 0.4149
med 0.1941 0.9934 0.4911 -0.0221 0.7921 -1.0907
q0.25 0.1379 0.9181 0.4465 -0.1526 0.7673 -1.3803
q0.75 0.2460 1.0595 0.5322 0.0867 0.8142 -0.8337
time 27.686s 27.269s 28.184s
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Table 6: Running Time (ARCH-like Circular Lake)
n true φ = 0.2 α = 1 φ = 0.5 α = 0 φ = 0.8 α = −1

50

mean 0.1863 0.9540 0.4733 -0.0946 0.7745 -1.2784
std 0.1019 0.2105 0.0876 0.2939 0.0573 0.6173
med 0.1867 0.9585 0.4776 -0.0451 0.7830 -1.1686
q0.25 0.1090 0.8187 0.4204 -0.2431 0.7461 -1.5892
q0.75 0.2581 1.0957 0.5348 0.1068 0.8153 -0.8371
time 16.287s 16.210s 16.554s

100

mean 0.1913 0.9734 0.4880 -0.0379 0.7899 -1.1133
std 0.0709 0.1477 0.0614 0.1858 0.0332 0.3496
med 0.1918 0.9748 0.4925 -0.0264 0.7931 -1.0798
q0.25 0.1461 0.8791 0.4533 -0.1545 0.7703 -1.3262
q0.75 0.2354 1.0727 0.5284 0.0972 0.8143 -0.8701
time 19.442s 19.561s 20.217s

150

mean 0.1953 0.9837 0.4922 -0.0262 0.7933 -1.0718
std 0.0613 0.1170 0.0490 0.1530 0.0267 0.2797
med 0.1961 0.9895 0.4952 -0.0113 0.7962 -1.0473
q0.25 0.1549 0.9046 0.4619 -0.1181 0.7778 -1.2359
q0.75 0.2367 1.0646 0.5257 0.0807 0.8113 -0.8748
time 23.911s 22.987s 24.471s

200

mean 0.1956 0.9875 0.4943 -0.0230 0.7953 -1.0455
std 0.0518 0.0952 0.0430 0.1345 0.0218 0.2360
med 0.1961 0.9874 0.4938 -0.0099 0.7959 -1.0279
q0.25 0.1601 0.9201 0.4670 -0.1145 0.7804 -1.1981
q0.75 0.2337 1.0524 0.5241 0.0681 0.8107 -0.8792
time 27.079s 26.840s 27.735s

4.2 Performance of Variance Fitting with N (0,1) Disturbance

In Section 3.1, with εi,n
iid∼ N (0, 1), we got the relationship between hi,n and unconditional variance

of ui,n:

V ar(ui,n) = [2(φ[In − (φ+ θ)Wn]−1Wn)ii + 1]E(hi,n)

To see whether the MLE can capture the spatial structure of unconditional variance, we can
calculate the empirical variance of each round of simulations, and we can calculate the mean of
[2(φ̂[In−(φ̂+θ̂)Wn]−1Wn)ii+1]ĥi,n as an approximation of empirical expectation. For the simplified
ARCH-like model, we use 200 regions and run 10000 rounds of simulations to get more precise
results; for the GARCH-like model, due to larger sample requirement for consistency and much
heavier computational burden, we use 1250 regions with 1000 rounds of simulations. The true
parameters we use here are the same combinations in the previous parts. Again, to see whether the
results are robust for different types of spatial correlation, we use both the county adjacency matrix
and circular lake matrix, and repeat each simulation exercise for these two different situations. In
each of the figures below, the red line is the empirical variance of simulated sample, and the blue
line is our approximation. The x-axis is the regions, and the y-axis is the level of empirical variance
and the approximation.

In general, our proxy can capture the trend of heteroskedasticity across each regions, however
it underestimate the level of heteroskedasticity. In most of the figures, the simulated unconditional
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Figure 1: ARCH-like County Adjacency Variance Fitting (φ0 = 0.2, α0 = 1)

variances are much more volatile than our proxy, even though our proxy recovers the average level of
unconditional variance and relationship between the unconditional variance of each regions. Also,
from the ARCH-like model results, we can see that when the spatial correlation are larger (as φ
increases), our fitting performance are getting better. In Figure 3 and Figure 5, we can nearly
perfectly fit unconditional variances of each region for county adjacency areas. The level of αseems
not affect the performance of fitting a lot, since we couldn’t see much differences of performance
comparing Figure 7 and 9, as well as Figure 8 and 10.

An interesting observation is that the fitting performance for county adjacency areas are much
better than the circular lake areas, both for ARCH-like model and GARCH-like model. In Figure
1 to 10, by setting the same true parameters, the differences of between simulated unconditional
variance and our approximation for most regions are much smaller for county adjacency matrix. A
potential reason may come from the symmetry of circular lake areas which make the heteroskedas-
ticity level smaller than county adjacency areas. In the figures above, we can see the simulated
unconditional variance look more “stationary” for circular lake areas than county adjacency areas.
If true, it is coincident with the observation for φ. In general, our model will have a better fit
for unconditional variance when the spatial correlation between areas are high asymmetric and the
spill-over effect at volatility level is strong among different regions. In empirical research, since in
most of the cases, we will consider geographic or economic distance between irregular regions, the
good fitting performance is expected as the county adjacency areas showed.
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Figure 2: ARCH-like Circular Lake Variance Fitting (φ0 = 0.2, α0 = 1)

Figure 3: ARCH-like County Adjacency Variance Fitting (φ0 = 0.5, α0 = 0)
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Figure 4: ARCH-like Circular Lake Variance Fitting (φ0 = 0.5, α0 = 0)

4.3 Distribution of Estimators with N (0,1) Disturbance
Besides consistency, distribution of the estimators can help us to do hypothesis test and build up
confidential intervals. For each round of simulation in the variance fitting section, we draw the
histogram of the estimators with comparing to Normal distribution. In each of the figures below,
the red line is the Normal density curve with the mean and variance equal to the sample mean
and variance of estimators. For ARCH-like model, the left-one is for φ̂, and the right-one is for
α̂. For GARCH-like model, from the left to right, they are for φ̂, θ̂ and α̂. Again, the sample
size for ARCH-like and GARCH-like model are 200 and 1250 regions with 10000 and 1000 different
samples.
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Figure 5: ARCH-like County Adjacency Variance Fitting (φ0 = 0.8, α0 = −1)

Figure 6: ARCH-like Circular Lake Variance Fitting (φ0 = 0.8, α0 = −1)
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Figure 7: GARCH-like County Adjacency Variance Fitting (φ0 = 0.3, θ0 = 0.4, α0 = 1)

Figure 8: GARCH-like Circular Lake Variance Fitting (φ0 = 0.3, θ0 = 0.4, α0 = 1)
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Figure 9: GARCH-like County Adjacency Variance Fitting (φ0 = 0.7, θ0 = −0.3, α0 = −1)

Figure 10: GARCH-like Circular Lake Variance Fitting (φ0 = 0.7, θ0 = −0.3, α0 = −1)
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Figure 11: ARCH-like County Adjacency Distribution of Estimators (φ0 = 0.2, α0 = 1)

Figure 12: ARCH-like Circular Lake Distribution of Estimators (φ0 = 0.2, α0 = 1)

In some of the figures, the estimators showed an extraordinary large density on the tails, 0
and 1. This is due to the constrained optimization method used in maximizing the concentrated
log-likelihood function. The most obvious case is in Figure 11, which has 100 times meet 0. This
is due to the small true value φ0 = 0. However, comparing to 10000 times simulation, by using
this empirical distribution of φ̂, we can still get the correct inference to reject H0 : ρ0 = 0 at 95%
significance level since only 1% of the tail probability had been affected. A potential solution is to
apply unconstrained optimization method, such as fminsearch and fminunc in Matlab. However,
after we tried to implement them on ARCH-like model, they does give larger biased estimators
and larger standard deviations. Due to this reason, we still present the results from constrained
optimizers.

In general, for GARCH-like model, due to the large sample size (1250 regions), the distribution
of the estimators are closer to Normal distribution (Figure 17 to 20). However, for ARCH-like
model, we can clearly see the distribution of φ̂ and α̂ are not symmetric for both county adjacency
areas and circular lake areas. From Figure 13 to 16, when φ is large, density functions of both
estimators are negative-skewed with a long tail on the left. If we use Normal distribution to do
statistical inference, we are likely to use wrong critical and get wrong conclusion.
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Figure 13: ARCH-like County Adjacency Distribution of Estimators (φ0 = 0.5, α0 = 0)

Figure 14: ARCH-like Circular Lake Distribution of Estimators (φ0 = 0.5, α0 = 0)

Figure 15: ARCH-like County Adjacency Distribution of Estimators (φ0 = 0.8, α0 = −1)
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Figure 16: ARCH-like Circular Lake Distribution of Estimators (φ0 = 0.8, α0 = −1)

Figure 17: GARCH-like County Adjacency Distribution of Estimators (φ0 = 0.3, θ0 = 0.4, α0 = 1)

4.4 Finite Sample Performance for Non-Normal Disturbances
In this section, we try to see whether our MLE perform good for non-Normal residuals. Here, we
consider three type of distributions: t-distribution, uniform distribution and Laplace distribution.

Figure 18: GARCH-like Circular Lake Distribution of Estimators (φ0 = 0.3, θ0 = 0.4, α0 = 1)
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Figure 19: GARCH-like County Adjacency Distribution of Estimators
(φ0 = 0.7, θ0 = −0.3, α0 = −1)

Figure 20: GARCH-like Circular Lake Distribution of Estimators (φ0 = 0.7, θ0 = 0.3, α0 = −1)

To make sure the true variance is 1, we normalized the t (10), Uniform[−1, 1] and Laplace(0, 1)

to
√

2
3 t(6), Uniform[−

√
3,
√

3] and 1√
2
Laplace(0, 1). With similar arguments as for N (0, 1) case,

we do not need to pay much attention to the existence of negative moments. These three distri-
bution represents three different type of residuals: 1. t-distribution has a fatter tail than Normal
distribution; 2. uniform distribution has a compact support which is not common for a residual
term; 3. Laplace distribution has more densities concentrated around zero. By exploring the small
sample performances for these three different cases, we can have a better understand of potential
applications of the MLE in empirical research. For each round of simulations, the spatial weighting
matrices are the county adjacency matrices used in Section 4.1, as well as the initial values, param-
eter settings, and repetition times. Considering the performance of Normal case, we use different
sample sizes for the ARCH-like model and GARCH-like model: for ARCH-like model, we use 100
and 200 regions; for GARCH-like model, we use 500 and 1250 regions. Here, we should notice that√

4
5 t(10) does not meet Assumption 5 either, since moments with order higher than 10 does not

exist. In Section 3.4, to get uniform integrability condition, we need to make sure the moment of
order 2 1−|θ0|

1−|θ|
1−θ−φ

1−θ0−φ0
is finite, this condition would be satisfied for some parameter settings, but in

general could not be guaranteed. So, the performance with t-distribution may highly depend on
the parameter setting.

Table 7 and Table 8 show the performances for the ARCH-like model. Similar to N (0, 1) case,
the small sample performance of φ̂MLE is good. For all the three distributions, the bias is small and
the standard deviation of φ̂ is shrinking which showed increasing significance level. For α̂, there
are larger biases, but as we argued before, this is a not a problem on identifying the DGP and
capturing spatial correlation between different regions.
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Table 7 : ARCH-like performance for non-Normal cases (100 regions)
distribution true φ = 0.2 α = 1 φ = 0.5 α = 0 φ = 0.8 α = −1

√
2
3 t(6)

mean 0.2040 0.9584 0.5023 -0.0291 0.8020 -1.0154
std 0.1006 0.2058 0.0794 0.3021 -1.2922 -0.6773
med 0.2059 0.9622 0.5094 -0.0236 0.8060 -0.9565
q0.25 0.1325 0.8209 0.4560 -0.2056 0.7784 -1.2922
q0.75 0.2756 1.0860 0.5557 0.1537 0.8304 -0.6773

Uniform[−
√

3,
√

3]

mean 0.1651 1.0034 0.4508 -0.0728 0.7607 -1.3282
std 0.0601 0.0999 0.0514 0.1209 0.032 0.2726
med 0.1634 1.0079 0.4566 -0.0602 0.7644 -1.2856
q0.25 0.1255 0.9379 0.4170 -0.1455 0.7422 -1.4915
q0.75 0.2060 1.0721 0.4889 0.0119 0.7832 -1.1339

1√
2
Laplace(0, 1)

mean 0.2105 0.9635 0.5252 0.0152 0.8142 -0.8689
std 0.1084 0.2410 0.0817 0.3363 0.0390 0.5502
med 0.2151 0.9646 0.5233 0.0389 0.8182 -0.7924
q0.25 0.1384 0.7987 0.4690 -0.1982 0.7914 -1.1999
q0.75 0.2827 1.1326 0.5796 0.2571 0.8428 -0.4799

Table 8 : ARCH-like performance for non-Normal cases (200 regions)
distribution true φ = 0.2 α = 1 φ = 0.5 α = 0 φ = 0.8 α = −1

√
2
3 t(6)

mean 0.1983 0.9685 0.5088 0.0035 0.8054 -0.9518
std 0.0949 0.1616 0.0725 0.2578 0.0367 0.4631
med 0.1997 0.9714 0.5123 0.0068 0.8072 -0.9359
q0.25 0.1312 0.8605 0.4610 -0.1662 0.7841 -1.2200
q0.75 0.2649 1.0685 0.5572 0.1728 0.8312 -0.6338

Uniform[−
√

3,
√

3]

mean 0.1706 1.0016 0.4532 -0.0775 0.7615 -1.3402
std 0.0504 0.0665 0.0448 0.0942 0.0295 0.2626
med 0.1722 1.0030 0.4569 -0.0739 0.7652 -1.3013
q0.25 0.1384 0.9552 0.4251 -0.1343 0.7440 -1.4986
q0.75 0.2031 1.0479 0.4824 -0.0073 0.7821 -1.1581

1√
2
Laplace(0, 1)

mean 0.2171 0.9926 0.5240 0.0501 0.8181 -0.7912
std 0.0937 0.1753 0.0736 0.2993 0.0369 0.5149
med 0.2231 0.9961 0.5272 0.0659 0.8210 -0.7400
q0.25 0.1552 0.8771 0.4745 -0.1437 0.7965 -1.0887
q0.75 0.2837 1.1100 0.5799 0.2662 0.8447 -0.4225

Table 9 and 10 show the performances for the GARCH-like model. For uniform distribution
and Laplace distribution, the performance are disasters. For t-distribution, although φ̂ has small
bias, the biases of θ̂ and α̂ is getting larger as the sample size increases. As the existence of higher
order moments are not guaranteed, as sample size increases, the estimators would be driven away
from the true parameters by the extreme samples. In general, the MLE estimator does not have a
good performance comparing to the Normal case.
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Table 9 : GARCH-like performance for non-Normal cases (500 regions)
n true φ = 0.3 θ = 0.4 α = 1 φ = 0.7 θ = −0.3 α = −1

√
2
3 t(6)

mean 0.2815 0.4549 0.8983 0.6561 -0.1619 -0.7886
std 0.0674 0.1600 0.2876 0.0746 0.1718 0.3333
med 0.2802 0.4549 0.8655 0.6595 -0.1587 -0.7484
q0.25 0.2345 0.3589 0.6896 0.6063 -0.2785 -0.9821
q0.75 0.3239 0.5661 1.0667 0.7072 -0.0444 -0.5527

Uniform[−
√

3,
√

3]

mean 0.4645 -0.4348 2.9930 0.7915 -0.7844 -1.8203
std 0.0521 0.1183 0.2963 0.0481 0.0571 0.1268
med 0.4641 -0.4576 2.9930 0.7909 -0.7866 -1.8204
q0.25 0.4291 -0.4946 2.8785 0.7581 -0.8218 -1.9045
q0.75 0.4978 -0.4176 3.0852 0.8239 -0.7518 -1.7358

1√
2
Laplace(0, 1)

mean 0.2633 0.5616 0.7241 0.5691 0.1328 -0.2082
std 0.0573 0.1050 0.1773 0.0767 0.1308 0.2501
med 0.2581 0.5665 0.7120 0.5722 0.1404 -0.1851
q0.25 0.2229 0.4932 0.6028 0.5169 0.0504 -0.3477
q0.75 0.3003 0.6351 0.8345 0.6157 0.2159 -0.0395

Table 10 : GARCH-like performance for non-Normal cases (1250 regions)
n true φ = 0.3 θ = 0.4 α = 1 φ = 0.7 θ = −0.3 α = −1

√
2
3 t(6)

mean 0.2833 0.4014 0.8656 0.6514 -0.1268 -0.7029
std 0.0455 0.1069 0.1881 0.0510 0.1123 0.2049
med 0.2813 0.4814 0.8471 0.6523 -0.1334 -0.6865
q0.25 0.2530 0.4014 0.7342 0.6185 -0.2019 -0.8355
q0.75 0.3132 0.5443 0.9831 0.6856 -0.0505 -0.5608

Uniform[−
√

3,
√

3]

mean 0.4745 -0.4714 2.9914 0.8072 -0.8070 -1.8225
std 0.0340 0.0426 0.1022 0.0321 0.0322 0.0780
med 0.4741 -0.4732 2.9998 0.8065 -0.8065 -1.8257
q0.25 0.4530 -0.4952 2.9483 0.7851 -0.8300 -1.8746
q0.75 0.4963 -0.4514 3.0496 0.8300 -0.7850 -1.7660

1√
2
Laplace(0, 1)

mean 0.2644 0.5771 0.7035 0.5624 0.1641 -0.1174
std 0.0378 0.0682 0.1136 0.0504 0.0841 0.1554
med 0.2635 0.5785 0.7019 0.5627 0.1656 -0.1069
q0.25 0.2391 0.5325 0.6231 0.5278 0.1059 -0.2112
q0.75 0.2895 0.6236 0.7780 0.5956 0.2255 -0.0171

5 Lagrangian Multiplier Test for H0 : θ0 = 0

5.1 Asymptotic Distribution of The LM Statistic
From Section 4.1, we can see that the finite sample performance of MLE for the GARCH-like
model is not good, since the bias is small only when we have more than 2000 observations. In
contrast, the ARCH-like model converge much faster and has good performance when we only
have 100 observations. Thus, for small sample applications, it is more proper to use the spatial
ARCH-like model to capture the spatial heteroskedasticity and risk spill-over effect. However, we
still interested in whether there exist GARCH-like spatial correlation of our data. Thus, in this
section, we develop a Lagrangian multiplier test for H0 : θ0 = 0, which can be used to test the
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existence of the spatial GARCH-like correlation in relative small sample application, with getting
the MLE for spatial ARCH-like model, i.e constrained estimator when θ0 = 0.

Recall the log-likelihood function of spatial GARCH-like model:

lnLn(un;α, φ, θ) = −n
2

ln(2π)− 1

2
exp

{
− α

1− θ

} n∑
i=1

n∏
j=1

|uj,n|−2(φ(In−θWn)−1Wn)ij u2
i,n

− 1

2
[1
′

nφ(In − θWn)−1Wnlogu
2
n +

nα

1− θ
] + ln |In − (θ + φ)Wn| − ln |In − θWn|

Since ∂(In−θWn)−1Wn

∂θ = (In − θWn)−1Wn(In − θWn)−1Wn, we have

∂
∏n
j=1 |uj,n|

−2(φ(In−θWn)−1Wn)ij

∂θ
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{
n∑
k=1

[
(In − θWn)−1Wn

]2
ik

lnu2
k,n

}

·
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|uj,n|−2(φ(In−θWn)−1Wn)ij

∂1
′

nφ(In − θWn)−1Wnlogu
2
n

∂θ

=1
′

nφ
[
(In − θWn)−1Wn
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The we have

∂ lnLn
∂α

=
1

2 (1− θ)
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{
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n∏
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·
n∏
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−1
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)
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∂ lnLn
∂θ

=
α

2 (1− θ)2 exp

{
− α

1− θ

} n∑
i=1

u2
i,n

n∏
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n∏
j=1
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When θ = 0, we have

∂ lnLn (α, φ, 0)

∂α
=

1

2
e−α

n∑
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u2
i,n
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To simplify notations, recall κi,n (ψ) = e−αu2

i,n

[∏n
j=1 |uj,n|

−2wij
]φ

and vi,n =
∑n
j=1 wij lnu2
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define the following two variable:

zi,n =
(
W 2
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Under H0 : θ = 0, let our estimator from ARCH-like (restricted) model as
(
ᾱ, φ̄

)
, denote ψ̄ =(

ᾱ, φ̄, 0
)
, we always have
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Using these two equations, we can simplify ∂ lnLn(α,φ,0)
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Then, the LM test will be derived from the asymptotic distribution of
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n∑
i=1

u2
i,n

 n∏
j=1

|uj,n|−2wij φ̄


= −1

2

n∑
i=1

κi,n
(
ψ̄
)

= −n
2

∂2Ln
(
ψ̄
)

∂φ2
= −1

2
e−ᾱ
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Since
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The remaining work to derive the LM statistic is to prove the joint asymptotic Normality of
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ᾱκi,n

(
ψ̄
)

+ φ̄κi,n
(
ψ̄
)
zi,n − φ̄zi,n − ᾱ
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for the ARCH-like

case, the matrix
(
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satisfies the condition for Theorem 2 in Xu and Lee (2019).

Then, for r > 18d̄0, we have
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For any k and l, we have limr→∞ α
(ι)
k,l (r) = 0. Thus, zi,n (ψ) and lnκi,n (ψ) are jointly α−mixing.

Then, for any fixed ψ̄,
{
ω̃i,n

(
ψ̄
)}
i∈Dn

is a α−mixing random field with the same upper bond of{
(zi,n (ψ) , lnκi,n (ψ))

′}
i∈Dn

.

To apply CLT in Jenish and Prucha (2009), the α−mixing coefficient need to have some other
properties. We can check that they are all satisfied for d = 2 in our case:

∞∑
m=1

ᾱ1,1 (m)m[d(2+δ)/δ]−1

=

b18d̄0c∑
m=1

ᾱ1,1 (m)m[2(2+δ)/δ]−1 +

∞∑
m=b18d̄0c+1

ᾱ1,1 (m)m[2(2+δ)/δ]−1

6

b18d̄0c∑
m=1

m[2(2+δ)/δ]−1 +

∞∑
m=b18d̄0c+1

4Cd3
− 7

3m
13
6 ξr/3d̄0m[2(2+δ)/δ]−1 <∞

∞∑
m=1

md−1ᾱk,l (m)

6

b18d̄0c∑
m=1

mᾱk,l (m) +

∞∑
m=b18d̄0c+1

mᾱk,l (m)

6

b18d̄0c∑
m=1

m+

∞∑
m=b18d̄0c+1

min {k, l} 4Cd3
− 7

3m
19
6 ξm/3d̄0 <∞

ᾱ1,∞ (m) = 4Cd3
− 7

3m
19
6 ξm/3d̄0 = O

(
m−2−ε)

for 0 < δ < 1, k + l 6 4 and some ε > 0, since 0 < ξ < 1. With the boundedness of

tr
((
In − φ̄Wn

)−1
Wn

)
, let σgθ ≡ V ar

(
∂ lnLn(ᾱ,φ̄,0)

∂θ

)
, by Theorem 1 and Corollary 1 in Jen-

ish and Prucha (2009), we have

σ−1
gθ

∂ lnLn
(
ψ̄
)

∂θ

d→ N (0, 1)

Then by similar arguments in Section 3.5, we can get the jointly asymptotic Normality of
∂ lnLn(ᾱ,φ̄,0)

∂θ .
Then, when H0 is true, we have
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LMθ=0 = −
[
∂ lnL(ψ̄)

∂θ

]2 [
E

(
∂2 lnL(ψ̄)

∂ψ∂ψ′

)]−1

33

d→ χ2 (1)

with getting the constraint estimator
(
ᾱ, φ̄

)
.

5.2 Monte Carlo Simulation for the LM test
To see how this LM test works in finite sample, we implement some Monte Carlo simulation exercise.
All the parameter settings are the same as previous Monte Carlo sessions. For each parameter
setting and sample size, we replicate 10,000 rounds simulation exercises. Table 11 and Table 13
reports the test size when H0 : θ0 = 0 holds. Table 13 and Table 14 reports the test power when
H1 : θ 6= 0 holds. Table 15 shows the simulated critical value for 10%, 5% and 1% significant level.
The residual process are εi,n

iid∼ N (0, 11). The critical values we use here are χ2
0.95 = 3.8415 (Table

1 and Table 2) and χ2
0.9 = 2.7055 (Table 3 and Table 4) with considering two different spatial

correlations: circular lake and county adjacent. In each simulation exercise, we use the empirical

information matrix
∂2 lnL(ψ̄)
∂ψ∂ψ′ instead of E

(
∂2 lnL(ψ̄)
∂ψ∂ψ′

)
or E

(
∂2 lnL(ψ0)
∂ψ∂ψ′

)
. Since it is calculated by

using empirical information matrix
∂2 lnLn(ψ̂)
∂ψ∂ψ′

which may not necessary negative semidefinite, it
is possible to get negative value even though the limiting distribution is χ2 (1). Simulated critical
values are showed in Table 15.

From Table 11 and Table 13, we can see the test size converges to the theoretical value when
sample size increases in general. With small sample size, the LM test has larger chance to over-
reject the true models. However, from Table 12 and Table 14, we can see that the power of the
LM test highly depend on the true parameter values and the spatial correlations. Although the
test power increases as the sample size increases, the test powers in circular lake situation are much
larger than the county adjacent situation. Also, combine the results from Table 11 to Table 14,
the LM test seems more useful when φ0 is larger, considering both the size and power. When φ0

is small, LM test will have slightly larger chance to make Type I error, but very large chance to
make Type II error with some particular spatial correlation settings, even with 500 samples. This
conclusion can be confirmed by the simulated critical values in Table 15 . The critical values for
large φ0 case converge to the critical values of χ2 (1) much faster.

The potential reason for the bad performance when φ0 is small may comes from the model
setting itself of the spatial GARCH-like model. Recall Section 3.3, when φ0 = 0, α0 and θ0 can not
be separately identified and the spatial GARCH-like model does not generate any heteroskedasticity
and spill-over effect on volatility level. When our sample size is small, although the true φ0 might
not be zero, as the φ0 is getting smaller, the chance to get a φ̂ nearly zero will getting larger. In this
case, the identification nearly fails, and the LM statistic becomes meaningless since the empirical
FOC of θ and the empirical information matrix will become very noisy. Also, as in applications,
we never know the value of true φ0, if φ̂ is very small and insignificant, we can simply say there
is no spatial heteroskedasticity and spill-over effect on volatility level. In this case, the effect of
GARCH-like term are almost absorbed by α, and the result from the noisy LM test is not important
in general.

Another thing not showed here is the performance when residuals are not Normal. Similar to
the performance of MLE for GARCH-like model, this LM test does not work well. Even though
the MLE for spatial ARCH-like model performs good for other type of residuals which is showed in
Table 7 and Table 8, the performance in Table 9 and Table 10 when introducing GARCH-like term
is a disaster. Thus, although our LM statistic is derived under the assumption θ0 = 0, the FOC of
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θ and the information matrix will have the wrong form for other distribution. It will make our LM
statistic meaningless at all.

Table 11: Test Size with N (0, 1) Residuals (χ2
0.95 = 3.8415)

n correlation α0 = 1, φ0 = 0.2 α0 = 0, φ0 = 0.5 α0 = −1, φ0 = 0.8

50 Circular Lake 0.091 0.121 0.105
County Adjacent 0.064 0.085 0.089

200 Circular Lake 0.084 0.086 0.070
County Adjacent 0.086 0.070 0.053

500 Circular Lake 0.072 0.056 0.049
County Adjacent 0.070 0.048 0.059

Table 12 : Test Power with N(0, 1) Residuals (χ2
0.95 = 3.8415)

n correlation α0 = 1, φ0 = 0.3, θ0 = 0.4 α0 = −1, φ0 = 0.7, θ0 = −0.3

50 Circular Lake 0.115 0.374
County Adjacent 0.098 0.187

200 Circular Lake 0.435 0.790
County Adjacent 0.241 0.267

500 Circular Lake 0.847 0.982
County Adjacent 0.397 0.405

Table 13: Test Size with N (0, 1) Residuals (χ2
0.9 = 2.7055)

n correlation α0 = 1, φ0 = 0.2 α0 = 0, φ0 = 0.5 α0 = −1, φ0 = 0.8

50 Circular Lake 0.095 0.153 0.166
County Adjacent 0.065 0.161 0.121

200 Circular Lake 0.154 0.124 0.108
County Adjacent 0.129 0.112 0.107

500 Circular Lake 0.1220 0.116 0.102
County Adjacent 0.136 0.103 0.109

Table 14 : Test Power with N(0, 1) Residuals (χ2
0.9 = 2.7055)

n correlation α0 = 1, φ0 = 0.3, θ0 = 0.4 α0 = −1, φ0 = 0.7, θ0 = −0.3

50 Circular Lake 0.180 0.4630
County Adjacent 0.119 0.252

200 Circular Lake 0.565 0.853
County Adjacent 0.285 0.372

500 Circular Lake 0.904 0.994
County Adjacent 0.5010 0.553

Table 15 : Simulated Critical Values with N (0, 1) Residuals

n correlation α0 = 1, φ0 = 0.2 α0 = 0, φ0 = 0.5 α0 = −1, φ0 = 0.8
0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

50 Circular Lake 2.48 5.26 23.69 4.44 8.79 43.78 3.95 6.64 17.42
County Adjacent 1.65 3.37 14.06 3.85 6.49 27.05 3.42 5.22 12.19

200 Circular Lake 3.93 7.15 31.61 3.15 4.74 10.18 2.81 4.15 8.04
County Adjacent 3.28 6.05 24.49 3.06 4.41 8.78 2.72 3.87 6.70

500 Circular Lake 3.27 5.00 12.39 2.81 4.17 7.63 2.74 3.98 7.09
County Adjacent 3.47 5.82 22.21 2.81 4.14 7.11 2.78 3.98 6.88
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6 An Application In U.S. Housing Market

6.1 Data Description
As a financial asset, risk management in housing market is important. Different from other financial
asset, since real estate asset is adhere to a particular region, the spatial correlation among different
regions can not be ignored. In existing literature, SAR model are used to capture the spatial
correlation in housing research, e.g. Basu and Thibodeau (1998), Yong Tu, etc (2007). However,
those SAR models only capture the spatial correlation at return level, but not volatility. Also,
existing literatures are more focused on the price itself, but return rate especially the excess return
compare to average housing market return, is more important to investors to make decisions. Some
existing literature focused on the excess returns, e.g. Barry(1980), Draper and Findlay (1982),
with CAPM models similar to analyzing stock returns. However, they totally ignored the spatial
correlation among different regions. Our spatial heteroskedasticity model would be a proper model
to capture the spatial correlation among the excess returns on housing market, and might be helpful
to improve risk management in housing investment decision.

From Federal Housing Finance Agency, we can access the annual house price indexes at county
level. The annual percentage change of HPI can be viewed as the average investment return.
Although the HPI does not perfectly match the return of housing market, since rents and taxes
are not included, and it counts totally price, not price per sq.ft, since county is a relatively large
area which contains different types of houses, tradings in one year should be a good mixture of
different types. Consider the Northeastern United States, it contains Washington, D.C. and 11
states: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey,
New York, Pennsylvania, Rhode Island and Vermont. In total, there are 245 counties in this area.
However, since the data of New York county, NY (Manhattan, FIPS: 36061), which is the core area
of New York city, are not available after 2014, . Thus, the time window we pick up is before 2014.
Due to lack of trading data, other 5 counties namely, Sullivan County, PA (FIPS: 42113), Cameron
County, PA(FIPS: 42023), Forest County, PA (FIPS: 42053), Juniata County, PA (FIPS: 42067),
and Hamilton County, NY (FIPS:36061), are not included in our data set. Population size of these
5 counties are very small, with less than 30,000 in Juniata county, PA and less than 10,000 in the
other four. We can expect that the house trading be inactive and not have significant impact on
neighbor counties. Thus, 240 counties are included in our sample region.

The time window we use is from 2006 to 2014. One reason to use this time windows is the
limitation of data accessibility as we stated before. The other reason is that we want to see
whether the spatial correlation among the return volatility is affected by the business cycle and
other time variant economics/demographic conditions. By NBER’s US Business Cycle Expansions
and Contractions research profile, December 2007 and June 2009 are the last peak and most recent
trough, thus 2006~2014 covers several contraction and expansion periods. Also, one direct source
of financial crisis in 2008 is subprime mortgage, which is closely correlated with the performance
and risk of housing market. Focusing on this period, we can have a closer look on how spatial
correlations among regions are interacting with the business cycle.

Table 16 are summary statistics of Annual Growth Rate of HPI in the selected 240 counties.
We can clearly see that housing markets perform very different across regions. Even during the
economic recession, some regions still have over 6% of annual return rate, which is much better
than the stock market at the same time. Conversely, even during economic expansion and recover
periods, the HPI in some areas still drop more than 4% annually. In each year, the volatility among
different regions are large. Compare to the average annual growth rate, standard deviation is pretty
large, which might indicate the heteroskedasticity across regions.
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Table 16: Summary Statistics of Annual Growth Rate of HPI in 240 counties
2006 2007 2008 2009 2010 2011 2012 2013 2014

Mean 7.09 2.07 -1.38 -4.45 -3.08 -2.28 -1.72 0.21 1.36
Minimum -4.15 -4.25 -9.5 -19.83 -11.91 -9.53 -8.34 -6.99 -6.08
Maximum 32.27 12.75 10.39 6.70 6.54 7.15 6.50 8.08 11.88

s.t.d 4.05 3.00 3.33 3.97 2.81 2.65 2.39 2.02 2.86

6.2 Empirical Strategy
Since we want to estimate the spatial spill over effect on volatility, and to see whether it is affected by
economic and geographic dynamics, running spatial ARCH-like model year by year is a reasonable
strategy. Let R̄t be the average annual growth rate of HPI across the 240 counties in year t, the
excess return of region i in year t is

ERi,t = Ri,t − R̄t
On one hand, since E (ERi,t) = 0, it meets the requirement to apply the spatial ARCH-like model.
On the other hand, as people care more about their relative performance of investment rather than
the return itself, the correlation on the volatilities of excess returns would be much more helpful in
real estate trading and risk management. Thus, we estimate the following model:

ERi,t =
√
hi,tεi,t, εi,t

iid∼ (0, 1)

loghi,t = φt

n∑
j=1

wij logu
2
j,t + αt

for t = 2006, · · · , 2014. The spatial correlation we consider here is county adjacent, i.e.

wij =

{
1
ni

if i and j are neighbors

0 else

where ni is the total number of neighbors of county i. Notice that we do not consider a county
itself as its own neighbor, so wii = 0 for ∀i.

The estimation procedure follows the concentrated MLE estimation procedure introduced in
previous chapters. To get the standard deviation of the estimator more precisely, instead of using
the finite sample approximations of the asymptotic variance we derived in Section 3.5, we follow the
residual bootstrap strategy introduced in Freedman and Peters (1984a) and Brock, etc (1992) which
is widely used in finance and housing literatures. Once we get α̂ and φ̂, we can back-out ε̂i,t, and
resample from ε̂i,t and form a new artificial excess return process using resampled estimated residual
terms and original estimators. Then, redo the MLE estimation on this new artificial process, we can
get estimators α̃ and φ̃. By repeating the resampling process, we can get the standard deviation
of those estimators. z−statistic can be constructed by the estimator divided by the bootstrap
standard deviation. Since we proved the asymptotic normality of MLE estimator for the spatial
ARCH-like model, and εi,t is assumed to be i.i.d, this procedure is valid, and the z−statistic is
Normal distributed. With this standard deviation, we can see how significant our estimators are.
In this paper, we resampled 10,000 times to make sure precision. We also compute the Cox-Smell
Pseudo R2 for the concentrated likelihood function comparing to ρ = 0 case, which would be helpful
to see how much the spatial spill-over effect helps to explain the total variance of excess return.
In addition, due to our sample size, it is not suitable to directly estimate the spatial GARCH-like
model, but there might be GARCH-like type spatial heteroskedasticity in the housing market return
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process. Here, we use the LM test proposed before to test whether the GARCH-like effect exist or
not. In the following tables, we will report the LM statistic and its p-value.

Here are the results which showed in Table 17:

Table 17: Estimation Results For Excess Return
2006 2007 2008 2009 2010 2011 2012 2013 2014

α̂t
2.11 1.84 2.15 1.84 1.62 1.53 1.54 1.35 1.86
(.17) (.12) (.16) (.16) (.13) (.12) (.11) (.13) (.12)

zα 12.46 15.96 13.74 11.72 12.95 12.78 13.68 10.27 15.52

φ̂t
.38 .32 .17 .41 .37 .39 .32 .34 .25

(.078) (.070) (.082) (.072) (.076) (.075) (.076) (.087) (.076)
zφ 4.84 4.65 2.01 5.76 4.90 5.22 4.15 3.89 3.32

Pseudo R2

.15 .12 .03 .14 .16 .13 .10 .12 .08(Cox-Snell)
LM statistic 2.43 0.78 11.71 -0.70 4.31 3.18 0.00 7.25 0.04

p-value 0.12 0.38 0.00 1 0.04 0.07 0.97 0.01 0.84

From Table 17, φ̂t for every sample year are significant at 1% level except 2008, but still with 5%
significant level for 2008. Also, we can see that in most of the years, φ̂t is greater than 0.3. As we
derived before, V ar (ui,n) =

[
2φ
(

(In − φWn)
−1
Wn

)
ii

+ 1
]
E (hi,n), from the correlation between

loghi,t and logu2
j,t, the magnitude of φ̂ indicates that when the variances of excess return increase by

10% for neighbors of county i, the variance of excess return of county i will be expected to increase
by at least 3%. This result shows a significant spill-over effect among neighbor regions on the risk
in housing market, both statistically and economically. Also, we can see that φ̂t is pretty persistent
across years. The only significant drop is in 2008, since the global financial crisis happened and the
economic environment of the US dramatically changed, the spill-over effect were relatively not that
important. But still, it could not be ignored. Since we only capture the spatial correlation among
neighbor counties, and do not allow direct correlation among counties apart from each other, their
might be other types of spill-over effect on volatility. Also, there might be some non-geographic
correlation among each county, such like labor force mobility and commodity tradings. However,
due to lack of data for inter-county trades and labor mobility among counties, it is hard to measure
the effect of economic correlation. Thus, the Cox-Snell Pseudo R2 does not give an evidence that our
model can explain most part of the variance. But only with the spill-over effect among neighbors,
the likelihood function improves a lot. In traditional real estate finance literature, especially which
discuss the risk and volatility, we focused more on mortgage and collateral channel, e.g. Cooper
(2013). However, this is not enough due to our result. Mortgage and collateral channel are focused
on specific individuals or areas, and do not contain any interaction among each regions. The LM
test results reject H0 : θ0 = 0 in 2008, 2010 and 2013, which indicates that there may exist spatial
GARCH-like term.

6.3 Comparison with SAR model
As we pointed out, SAR model can only capture the spatial correlation at return level. However,
intuitively, spill-over effect at return level will definitely have large impact on volatility, since the
sources of externality are similar when consider the same spatial correlation structure. To see
whether it is necessary to consider the spill-over effect on volatility level separately, we implement
the following regressions on the excess returns: first fit the excess return processes with the SAR
model, get the residual terms, and then fit the residuals with the spatial ARCH-like model. If the
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SAR model can fully captures the spill-over effects, in the second round residual regressions, φ̂t
should be small and insignificant. Table 18 and Table 19 are the estimation results:

Table 18: Estimation Results for SAR Fitting
2006 2007 2008 2009 2010 2011 2012 2013 2014

ρ̂t
.75 .64 .82 .78 .66 .69 .72 .39 .51

(.072) (.089) (.059) (.066) (.086) (.082) (.077) (.12) (.11)
tρ 10.33 7.16 13.90 11.85 7.70 8.44 9.33 3.19 4.81
R2 .51 .37 .63 .63 .43 .46 .48 .11 .21

Table 19: Estimation Results for SAR Residuals
2006 2007 2008 2009 2010 2011 2012 2013 2014

α̂t
1.87 1.63 1.42 1.71 1.48 1.26 1.13 1.32 1.83
(.23) (.13) (.16) (.17) (.17) (0.13) (.14) (.13) (.13)

zα 8.30 12.62 9.11 10.06 8.78 9.74 8.34 10.08 13.87

φ̂t
.31 .25 .10 .21 .14 .37 .12 .34 .15
(.14) (.094) (.11) (.11)) (.090) (.086) (.086) (.082) (.090)

zφ 2.16 2.89 1.04 1.92 1.31 4.05 1.43 4.16 1.66
Pseudo R2

.068 .011 .0059 .056 .047 .10 .0087 .13 .022(Cox-Snell)
LM statistic 6.15 0.15 -0.15 10.89 -0.70 0.60 0.42 10.27 0.40

p-value .01 .70 1 .00 1 .44 .52 .00 .53

In Table 18, similar to previous literatures, SAR model captures the spatial correlation and spill-
over effect of housing market returns pretty well. However, after eliminate the first order effect, the
residual terms still have strong spatial correlation on volatility level which is showed in Table 19.
In 2006, 2007, 2009, 2011 and 2013, φ̂t ’s are still large and significant at 5% level. For other years,
although statistically not very significant, φ̂t ’s are closer or larger than 0.1 which still shows some
spatial correlation on the volatility level. Comparing to Table 2, φ̂t reduce after eliminate the first
order effect, but the levels vary a lot for different years. In 2009, φ̂t decreases 0.2 after eliminate the
SAR effect, however, it remains the same in 2013 and only decreases 0.02 in 2011. This indicates
that for US housing market, the spill-over effect on volatility level can be partially explained by
the spill-over effect on the return level, but the explanation power varies across time. The LM test
reject H0 : θ0 = 0 in 2006, 2009 and 2013, which is different from the result when directly estimate
the spatial ARCH-like model on the excess return processes. It also indicates that the spill-over
effect on the return level and volatility level may have different sources through the same spatial
network, which could not be captured by SAR model. Combine the R2 of SAR estimation and
Cox-Snell Pseudo R2 of the spatial ARCH-like estimation, the SAR model and spatial ARCH-like
model have good explanation power on spatial externality though adjacent county networks.

Moreover, by comparing ρ̂t and φ̂t from Table 17 to 19, the spatial correlation at return level
and volatility level do not have a clear correlation. For example, in 2008, ρ̂t is the largest among
the 9-year time window, however φ̂t is the smallest and most insignificant one. Contrary, in 2013,
φ̂t is significant and large, both fitting the original excess return and fitting the SAR residual terms.
This indicates that the spatial correlation on return and volatility level are driven by different time
varying factors. To fully learn the interaction between time-series dynamics and spatial spill-over
effects on housing returns, a panel model is needed. But the result would be a starting point. Not
only for housing market, but also some other financial markets may have similar characteristics.
For example, the return of municipal bonds are highly correlated with the economic performance
in a particular city or state, thus spill-over effect among neighbors on risk would also be large.
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International stock market may be a more significant example. Asian financial crisis in 1997 and
European debt crisis in 2009 are both good examples on how risk transmit from one or a few
economies to neighbor economies. By similar empirical strategy in this paper, we would expect a
significant φ̂ for each time period when using their excess stock returns. This model would be very
helpful to test the spill-over effect on volatility in a particular area.
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