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Abstract

By introducing both intra-temporal and inter-temporal risk spillover through network, we pro-
pose a new multivariate conditional volatility model. For stationary case, the model can capture
the dynamic of conditional heteroskedasticity structure when there are long-run stable links
among multiple markets, and it is easy to be estimated consistently by QMLE approach. By
Monte Carlo simulations, we show good finite sample performance when n/T → 0. When ap-
plying the model to monthly stock return innovations of 11 eurozone countries from March 1999
to April 2021, by using geographical and institutional links to capture the network between the
countries, the performance of our model dominates single variate GARCH(1,1), EGARCH(1,1)
and multivariate GARCH with both constant correlation and dynamic conditional correlation
settings by likelihood values and AIC criteria.

1 Introduction

Risk spillover is an important factor in the modern highly integrated global economy. Geographical,
political, trade and other relationships among nations and regions are served as bridges to spread risk
in local markets from one to others. In existing literature, risk spillovers between financial markets
through networks are investigated especially after the global financial crisis. Hong (2001) developed
a test for volatility spillover between two time series, and applied it to exchange rates. Hong, Liu
and Wang (2009) developed a model to capture the Granger causality correlations of extreme risk
spillover between financial markets. Blasques et al. (2016) applied static spatial Durbin model to
capture time-varying spillover of sovereign risk in CDS markets in some European countries. Kou,
Peng and Zhong (2017) introduced spatial interaction into traditional CAPM and APT models, and
applied such models to study the co-movements of Eurozone stock indices and the future contracts
on S&P/Case-Shiller Home Price Indices. Richmond (2019) developed a general equilibrium model
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including trade network and used it to explain the lower interest rates and currency risk premia of
central countries in the global trading network.

However, for conditional volatility of assets, network spillover effect had not been investigated
seriously. Currently, for multiple markets/assets, there are many different specifications extended
from single variate ARCH/GARCH type models. Some of them assume the conditional volatilities
of each asset follow single variate ARCH/GARCH model, with some additional assumptions on
their conditional covariances, such as multivariate GARCH models developed by Bollerslev (1990)
and Engle (2002). These types of models do not consider the spillover at volatility level at all.
Some of them assume simultaneous equations structure on conditional variances, such as BEKK
and VECH models discussed in Engle and Kroner (1995) and extending literature. Although this
type models have some advantages, there are too many parameters included which generate serious
identification issue. Asymptotic properties of the estimators for these models are also extremely
hard to be discussed. Also, as the spillovers in these specifications are inter-temporal from history
without considering intra-temporal interactions, we are not able to use them to analyze the network
effects among the markets when we want to focus on some particular links among the assets.

In this paper, we try to introduce the network risk spillover pattern into the conditional het-
eroskedasticity framework. As directly extending from ARCH/GARCH is hard, we focus on the
dynamic of conditional log-volatility, and we try to give a new multivariate exponential GARCH
type model with autoregressive effect and with both intra-temporal and inter-temporal network
spillover effects. In terms of estimating method, the model can be linearized to a dynamic spa-
tial panel model and easily estimated by likelihood approach. When there are persistent network
correlation among multiple countries or regions, our model will be a better choice to capture the
dynamic of conditional heteroskedasticity structure of assets associated with the individuals inside
the network.

In the following part of this paper, Section 2 introduces the model, including the discussion of
alternative model specifications, formation and some properties of the ESPARCH(1,1). Section 3
discusses the QMLE for ESPARCH(1,1) model, including QMLE under different assumptions of
residual process, asymptotic property of QMLE estimators, and an LM type of test for Normality of
residuals. Section 4 shows the Monte Carlo simulation results of finite sample properties of QMLE
and normality test. Finally, Section 5 provides an empirical example focusing on monthly stock
returns of 11 eurozone countries from March 1999 to April 2021. A comparison of the performance
of our model with some popular traditional conditional heteroskedasticity models is also presented
in Section 5. Finally, Section 6 is a brief conclusion of this paper.

2 Model Formation

2.1 Alternative Model Specifications

To capture the conditional heteroskedasticity, the most popular and fundamental model is the
univariate ARCH model in Engle (1982). Let yt = σtεt where εt ∼ i.i.d with E (εt) = 0 and
V ar (εt) = 1, the conditional volatility of yt has a function form
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σ2
t = f (yt−1, yt−2, · · · , , µ)

= f (σt−1εt−1, σt−1εt−2, · · · , µ)

where µ is a constant. When considering risk spillover from multiple markets, let −i denote the
markets correlated with market i , the function form of conditional volatility can be modified as

σ2
i,t = fi (yi,t−1, yi,t−2, · · · ; y−i,t, y−i,t−1, · · · , µi)

for market i.
For the functional choice of f , in existing literature, there are several popular specifications.

The simplest model formation is linear, which gives the regular ARCH model:

σ2
t = µ+

p∑
j=1

αjy
2
t−j

when we only consider one market without any spillover.
However, if we extend the linear specification to a situation with inter- and intra-temporal

spillover with other markets, the model will have a complicated structure and be hard to estimate.
Let Wn = (wij,n)n×n be the spatial correlation matrix among n markets, where wij,n captures
the spillover from market i to market j. For regularity, we assume wij,n ≥ 0 and wii,n = 0 for
every i, j = 1, · · · , n. Considering the effect from one-period time lag, we can write the conditional
volatility of market i as

σ2
i,t = µi + λ

n∑
j=1

wij,ny
2
j,t + γy2i,t−1 + ρ

n∑
j=1

wij,ny
2
j,t−1

without considering effect from external regressors. As yi,t = σi,tεi,t, the model can be further
written as

y2i,t =

µi + λ

n∑
j=1

wij,ny
2
j,t + γy2i,t−1 + ρ

n∑
j=1

wij,ny
2
j,t−1

 ε2i,t

Although the linear specification seems simple, as the correlation among {yi,t} and {εi,t} is
extremely complex, MLE and GMM approaches are nearly impossible. Consider the simplest
case with no time lag effect, the model becomes y2i,t = µiε

2
i,t + λ

∑n
j=1 wij,ny

2
j,tε

2
i,t. Denote y2t =(

y21,t, · · · , y2n,t
)′
, µ = (µ1, · · · , µn)

′
, Wn = (wij,n)n×n and ε2t =

(
ε21,t, · · · , ε2n,t

)′
, we can rewrite the

model into the following form:
y2t = λWndiag

(
ε2t
)
y2t + diag (µ) ε2t

where diag
(
ε2t
)

=


ε21,t

. . .

ε2n,.t

.
Then, we have

[
In − λWndiag

(
ε2t
)]
y2t = diag (µ) ε2t

When the distribution of εi,t is continuous with unbounded support on R, such like N (0, 1), since
all the matrix norms are equivalent, i.e. for any two matrix norm ‖·‖α and ‖·‖β , we have that
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r ‖A‖α ≤ ‖A‖β ≤ s ‖A‖α some positive numbers r and s, for all matrices A ∈ Rn×n 1, there is
a positive possibility that

∥∥λWndiag
(
ε2t
)∥∥ > 1 for all matrix norms and any real number λ 6= 0

since they are all equivalent to ‖·‖∞ and
∥∥λWndiag

(
ε2t
)∥∥
∞ = supi |λ|

∑n
j=1

∣∣wij,nε2j ∣∣ can be larger
than any given positive number with non-zero probability when Wn 6= 0. In this scenario, we are
not able to write the

[
In − λWndiag

(
ε2t
)]−1 into an infinite sum of powers of λWndiag

(
ε2t
)
and

do further discussion on the projection between ε2t and y2t . When εi,t has a bounded support, for
example a continuous uniform distribution, for some λ,

∥∥λWndiag
(
ε2t
)∥∥
∞ < 1 can be guaranteed

since λWndiag
(
ε2t
)
is a bounded matrix. However, with the following form

y2t =
[
In − λWndiag

(
ε2t
)]−1

diag (µ) ε2t

=

∞∑
l=0

λl
[
Wndiag

(
ε2t
)]l

diag (µ) ε2t

, with non-separable terms
[
Wndiag

(
ε2t
)]l , further investigating the relationship between ε2t and

y2t is almost impossible. Thus, it is nearly impossible to write down the MLE based on density of
εi,t. For moment condition, as E

(
y2t
)
is extremely hard to be calculated, thus GMM is also not a

feasible approach.
Due to the problems of linear specifications above, other forms are needed. The most straight-

forward way is to consider taking log-transformation on square of yi,t, instead of using linear
specification. Some recent literature had discussed asymptotic properties by comparing different
specifications including log-ARCH and exponential GARCH, such like Francq, Wintenberger and
Zakoïan (2013). Focusing on conditional log-volatility is easier to build up likelihood based estima-
tors and the conditions for consistency and asymptotic normality are much weaker than directly
use conditional volatility. Based on similar idea and consideration, in the remaining parts of this
paper, we will focus on the specification with log-transformation to extend the conditional volatility
model to a setting with allowing risk-spillovers across regions and markets.

2.2 DGP of ESPARCH(1,1) Model

In Nelson (1991), a general exponential ARCH form is proposed, that the conditional log-
volatility of an asset is

ln
(
σ2
t

)
= αt +

∞∑
k=1

βkg (εt−k) , β1 ≡ 1

where {αt}∞t=−∞, {βt}∞t=−∞ are real, non-stochastic, scaler sequences, and g is a function. For
multiple assets situation, to capture spill-over effect through networks, we extend the model and
have the log-volatility for each asset i as

ln
(
σ2
t

)
= αt +

∞∑
k=1

βkg (yi,t−k) +

∞∑
s=0

n∑
j=1,j 6=i

λkwij,ng (yj,t−s)

where g (x) = lnx2 for x 6= 0. Here wij,n satisfies wii = 0 and wij,n ≥ 0 for ∀i 6= j, which captures
1See Chapter 5 of Roger A. Horn and Charles R. Johnson (2013).
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the network correlation from i to j. Thus, λkwij,ng (yj,t−k) captures the inter-temporal spillover
effect from i to j on conditional volatility s > 0 periods ago. When s = 0, it captures the intra-
temporal spillover effect. In this paper, we will mainly focus a simple situation that k = 1 and
s = 0, 1 which we call a ESPARCH(1,1) model:

yi,t = σi,tεi,t, εi,t
iid∼(0,1) (1)

lnσ2
i,t = µi + λ

n∑
j=1

wij,n ln y2j,t + γ ln y2i,t−1 + ρ

n∑
j=1

wij,n ln y2j,t−1 (2)

The order of spatial lag and time lag are both 1, i.e. we only consider risk-spillover through one
particular network and only consider dynamic effect from the previous period. In this model,
µi captures the long-run persistent idiosyncratic risk pattern, the spatial autoregressive term
λ
∑n
j=1 wij,n ln y2j,t captures the interaction and intra-temporal spill-over effect, the time series

autoregressive γ ln y2i,t−1 captures the dynamic effect from its own previous period, and finally the
spatial-temporal autoregressive term ρ

∑n
j=1 wij,n ln y2j,t−1 captures the dynamic spill-over effect

from other markets. Since after log-transformation, there is no positive limitation on the LHS of
(2), µi can take any real numbers.

From (2), for each i, we have

λwij,n =
∂ lnσ2

i,t

∂ ln y2j,t
≈
4σ2

i,t/σ
2
i,t

4y2j,t/y2j,t

γ =
∂ lnσ2

i,t

∂ ln y2i,t−1
≈

4σ2
i,t/σ

2
i,t

4y2i,t−1/y2i,t−1

ρwij,n =
∂ lnσ2

i,t

∂ ln y2j,t−1
≈

4σ2
i,t/σ

2
i,t

4y2j,t−1/y2j,t−1
where the change of variable x is small enough, i.e. 4x ≈ 0. Thus, economically, the parameters λ,
γ and ρ capture the elasticity of conditional volatility with respect to the volatility of other assets
and historical volatility of its own and other assets. In the ESPARCH(1,1) model, all the elasticities
are constant, thus it captures the long-run equilibrium reaction of one market to fluctuations of
neighborhood markets as well as the information from the past. Additionally, as elasticity is scale-
free, we can also avoid the situation that the estimated risk spillover is dominated by extremely
volatile neighborhood markets. In this sense, the log-transformed form is better than the linear
specification.

Denote the past history from period 0 to period (t− 1) as Ft−1, we always have
E (yi,t|Ft−1) = E (σi,t|Ft−1)E (εi,t) = 0

By transforming (1), we have
ln y2i,t = lnσ2

i,t + ln ε2i,t (3)

Combine (2) and (3), we have

ln y2i,t = µi + λ

n∑
j=1

wij,n ln y2j,t + γ ln y2i,t−1 + ρ

n∑
j=1

wij,n ln y2j,t−1 + ln ε2i,t (4)

5



Let logY 2
t =

(
ln y21,t, · · · , ln y2n,t

)′
, µ = (µ1, · · · , µn)

′
, logε2t =

(
ln ε21,t, · · · , ln ε2n,t

)′
and Wn =

(wij,n)n×n , (4) can be transformed into the following vector form:

logY 2
t = µ+ λWnlogY

2
t + (γIn + ρWn) logY 2

t−1 + logε2t (5)

When (In − ρWn)
−1exists, we can rewrite (5) into the following reduced form representation:

logY 2
t = (In − λWn)

−1
µ+ (In − λWn)

−1
(γIn + ρWn) logY 2

t−1

+ (In − λWn)
−1
logε2t (6)

and

logΣ2
t = (In − λWn)

−1
µ+ (In − λWn)

−1
(γIn + ρWn) logY 2

t−1

+
[
(In − λWn)

−1 − In
]
logε2t (7)

since logΣ2
t = logY 2

t −logε2t where logΣ2
t =

(
lnσ2

1,t, · · · , lnσ2
n,t

)′
. As logε2t are i.i.d random vectors,

logY 2
t follows a VAR model with a specification of neighborhood effects.
By the following decomposition

(In − λWn)
−1

(γIn + ρWn)

=

∞∑
l=0

(λWn)
l
(γIn + ρWn)

=

∞∑
l=0

λlW l
n (γIn + ρWn)

=γ

∞∑
l=0

λlW l
n + ρ

∞∑
l=0

λlW l+1
n

=γIn + (ρ+ γλ)

∞∑
l=1

λl−1W l
n

when ‖ρWn‖∞ < 1. (In − λWn)
−1

(γIn + ρWn) logY 2
t−1 captures the combination of time-series

momentum effect of the market itself and exponentially decade dynamic risk-spillover effects from
neighbor market, neighbor’s neighbor, etc. By inverting the intra-temporal spatial correlation
operator (In − λWn), the intra-temporal spillovers from first-order neighbors are transformed to
inter-temporal spillovers combined from different orders of neighbors.

2.3 Covariance Stationarity of ln y2i,t
As this model is to capture the dynamic of conditional log-volatility process, investigating the
stationarity of ln y2i,t is important. Let E

(
logε2t

)
= ω and ξt = logε2t − ω, when (In − ρWn)

−1

exists, we can rewrite (6) as the following:
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logY 2
t = (In − λWn)

−1
(µ+ ω) + (In − λWn)

−1
(γIn + ρWn) logY 2

t−1

+ (In − λWn)
−1
ξt (8)

By backward induction, given initial observation at t = 0, we

logY 2
t =

t∑
s=0

[
(In − λWn)

−1
(γIn + ρWn)

]s
(In − λWn)

−1
(µ+ ω)

+
[
(In − λWn)

−1
(γIn + ρWn)

]t
logY 2

0

+

t∑
s=0

[
(In − λWn)

−1
(γIn + ρWn)

]t−s
(In − λWn)

−1
ξs

For any fixed n, to make sure this process is stationary, we need all the eigenvalues of (In − λWn)
−1

(γIn + ρWn)

lie inside the unit circle to make sure lims→∞

[
(In − λWn)

−1
(γIn + ρWn)

]s
= 0. A necessary con-

dition is
∥∥∥(In − λWn)

−1
(γIn + ρWn)

∥∥∥
∞
< 1.

For most commonly used row-normalized spatial weighting matrix, i.e.
∑n
j=1 wij = 1 for ∀i, we

have ‖λWn‖∞ = |λ| . We need |λ| < 1 to make sure (In − λWn)
−1 exist. Then, we have∥∥∥(In − λWn)

−1
(γIn + ρWn)

∥∥∥
∞

=

∥∥∥∥∥γ
∞∑
l=0

λlW l
n + ρ

∞∑
l=0

λlW l+1
n

∥∥∥∥∥
∞

≤ |γ|
∞∑
l=0

|λ|l
∥∥W l

n

∥∥
∞ + |ρ|

∞∑
l=0

|λ|l
∥∥W l+1

n

∥∥
∞

=
|γ|+ |ρ|
1− |λ|

Thus, when |γ|+|ρ|1−|λ| < 1, i.e. |λ|+ |γ|+ |ρ| < 1,
{

ln y2i,t
}
t=1,··· ,T and

{
lnσ2

i,t

}
t=1,··· ,T are stationary.

When
∥∥∥(In − λWn)

−1
(γIn + ρWn)

∥∥∥
∞
< 1 holds, we have

E
[
logY 2

t

]
=
[
In − (In − λWn)

−1
(γIn + ρWn)

]−1
· (In − λWn)

−1
(µ+ ν)

= [(1− γ) In − (λ+ ρ)Wn]
−1

(µ+ ω)

and

E
[
logΣ2

t

]
= E

[
logY 2

t

]
− E

[
logε2t

]
= [(1− γ) In − (λ+ ρ)Wn]

−1
(µ+ ω)− ω

which can be easily computed from (6) and (7). For the covariance matrix of logY 2
t and covariance

between logY 2
t and logY 2

t−k where k is positive integer and less than t, they are easy to compute
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by multivariate Yule-Walker equation method as long as Eξ2t < ∞. Thus, with proper condition,
the ESPARCH(1,1) model is a stable model, and

{
lnY 2

t

}
t
is covariance stationary. The QMLE

estimator discussed in the following session will be limited to stationary situation only.

3 Quasi-maximum Likelihood Estimation

3.1 QMLE for Normal Disturbance Situation

In classical ARCH/GARCH and stochastic volatility literature, we often assume the disturbance
terms are standard Normal, especially predicting conditional volatility in the future. When εi,t

iid∼
N (0, 1), we have ln ε2i,t follows log-χ2 distribution. The mean and variance of ln ε2i,t are known to
be ψ

(
1
2

)
− ln

(
1
2

)
≈ −1.2704 and 1

2π
2 respectively, where ψ (·) is the Digamma function. Thus, ξi,t

is a non-Gaussian white noise with zero mean and 1
2π

2 variance. Let logY 2
t = Zt and η = µ−1.27ln

where ln =

1, · · · 1︸ ︷︷ ︸
n


′

, then we can rewrite (5) as

Zt = η + λWnZt + (γIn + ρWn)Zt−1 + ξt (9)

Similar to stochastic volatility models, we can construct QMLE for our model by using Normal
density to approximate the density of ξt2 . By (9), let θ = (λ, γ, ρ)

′
, then the quasi-density function

of ξt is

f (ξt) = π−3n/2 exp

{
− 1

π2
ξ
′

tξt

}
Then, the conditional quasi-log-density function for t = 1, · · · , T is

qn,t (Xt; θ, η|Ft−1) = −3

2
n ln (π)− 1

π2
[Sn (λ)Zt − (γIn + ρWn)Zt−1 − η]

′

· [Sn (λ)Zt − (γIn + ρWn)Zt−1 − η] + ln |Sn (λ)|

where Sn (λ) = In − λWn. Then, given {Yt}Tt=0, we can estimate θ by maximizing the following
quasi-log-likelihood function:

Qn,T (θ, η) = −3

2
nT ln (π)− 1

π2

T∑
t=1

[Sn (λ)Zt − (γIn + ρWn)Zt−1 − η]
′

· [Sn (λ)Zt − (γIn + ρWn)Zt−1 − η] + T ln |Sn (λ)| (10)

Since the dimension of η is n, which makes the optimization procedure harder to implement
with large number of markets, we can concentrate out η to simplify the quasi-log-likelihood function
and numerical optimization procedure. From (10), it is easy to get the first order condition of η:

∂Qn,T (θ, η)

∂η′ = − 2

π2

T∑
t=1

[Sn (λ)Zt − (γIn + ρWn)Zt−1 − η]
′

(11)

When Qn,t (θ, η) is maximized, we have ∂Qn,T (θ,η)

∂η′
= 0, then

2See Harvey, Ruiz and Shepherd (1994)

8



η̂ =
1

T

T∑
t=1

[
Sn

(
λ̂
)
Zt − (γ̂In + ρ̂Wn)Zt−1

]
(12)

Then, by (12), we can get the concentrated quasi-log-likelihood function as

Q̃n,T (θ) = −3

2
nT ln (π)− 1

π2

T∑
t=1

[
Sn (λ) Z̃t − (γIn + ρWn) Z̃t−1

]′
·
[
Sn (λ) Z̃t − (γIn + ρWn) Z̃t−1

]
+ T ln |Sn (λ)| (13)

where Z̃t = Zt − 1
T

∑T
t=1 Zt. By maximizing Q̃n,T (θ) and then back out η̂ and µ̂, we can get

estimate all the parameters.

3.2 QMLE When εi,t Is Not Normal

When εi,t are not Normal, the properties of ln ε2i,t also changed, especially for its mean and variance,
thus the QMLE derived in Section 3.1 would not work. Fortunately, we can use similar technique
to construct QMLE for some particular situations. In finance literature, the t- distribution is also
widely used as a residual process to capture the heavy-tailed risk. When εi,t

i.i.d∼
√

v−2
v t (v) for

v ≥ 3 after rescaled variance to 1, we can rewrite it as εi,t =
√

v−2
v ζi,t/κ

1
2
i,t, thus

ln ε2i,t = ln

(
v − 2

v

)
+ ln ζ2i,t − lnκi,t (14)

where ζi,t
i.i.d∼ N (0, 1) and κi,t

i.i.d∼ χ2 (v) with degree of freedom v. Thus, by properties of log-χ2

distribution with degree of freedom v3, we have

E
(
ln ε2i,t

)
= ln

(
v − 2

v

)
+ ψ

(
1

2

)
− ln

(
1

2

)
− ψ

(v
2

)
+ ln

(
1

2

)
= ln

(
v − 2

v

)
− ψ

(v
2

)
+ ψ

(
1

2

)
and

var
(
ln ε2i,t

)
=

1

2
π2 + ψ

′
(v

2

)
where ψ (·) is the Digamma function and ψ

′
(·) is the Trigamma function. Thus, with the assumption

that εi,t
i.i.d∼ t (v), denote η = µ+

[
−1.27 + 1

2 ln
(
v−2
v

)
− ψ

(
v
2

)
+ ln

(
v
2

)]
ln, we can derive a dynamic

spatial panel form with the same form as (9). Thus, the QMLE will have the similar form as (10)
despite the variance is no longer 1

2π
2, but 1

2π
2 + ψ

′ ( v
2

)
.

Another more general situation is that we do not put any assumptions on the εi,t. In this case,
QMLE is still possible but not all parameters can be identified. In this situation, we are not able to
estimate the conditional variance σ2

i,t terms based on (7) as µ is not identified due to the unknown
expectation of ln ε2i,n after log-transformation. However, we can still capture the network effects of
the conditional volatilities. Assume E

(
ln ε2i,n

)
= ω and var

(
ln ε2i,n

)
= σ2, denote logY 2

t = Zt and

3 See Abramovitz and Stegun (1970)
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η = µ+ ωln, then we can still get an equation which has the same form as (10). In this situation,
as σ2 is unknown, the QMLE will be

Hn,T

(
σ2, θ, η

)
= −nT

2
ln
(
2πσ2

)
− 1

2σ2

T∑
t=1

[Sn (λ)Zt − (γIn + ρWn)Zt−1 − η]
′

· [Sn (λ)Zt − (γIn + ρWn)Zt−1 − η] + T ln |Sn (λ)| (15)

If we believe εi,t follows a distribution with skewness or kurtosis different from Normal distribution,
it would be a better choice than assuming Normal if the purpose is not to forecast the conditional
volatility. Similar to the normal situation, we can concentrate out η by its first order condition,
and maximize the following concentrated log-likelihood function

H̃n,T

(
σ2, θ

)
= −nT

2
ln
(
2πσ2

)
− 1

2σ2

T∑
t=1

[
Sn (λ) Z̃t − (γIn + ρWn) Z̃t−1

]′
·
[
Sn (λ) Z̃t − (γIn + ρWn) Z̃t−1

]
+ T ln |Sn (λ)| (16)

where η̃
(
σ2, λ, γ, ρ

)
= 1

T

∑T
t=1 [Sn (λ)Zt − (γIn + ρWn)Zt−1] , Z̃t = Zt − 1

T

∑T
t=1 Zt and Z̃t−1 =

Zt−1 − 1
T

∑T
t=1 Zt−1.

3.3 Identification and Asymptotic Properties of QMLE

When the distribution of εi,t is is unknown, QMLE is based on (16). When ξi,t are i.i.d residuals

with unknown distribution, by denoting ψ =
(
σ2, θ

′
)′

, the QMLE ψ̂nT is
√
nT−consistent and

asymptotically normal when n/T → 0 in Yu, de Jong and Lee (2008)4. The limiting distribution
of ψ̂nT is the following

√
nT
(
ψ̂nT − ψ0

)
d→ N

(
0,Σ−1ψ0

(Σψ0
+ Ωψ0

) Σ−1ψ0

)

where Σψ0 = E
(

1
nT

∂2Q̃n,T (ψ0)

∂ψ′∂ψ

)
and Ωψ0 =

(
4µ4

σ4
0
− 3
)

1
4σ4

0

1
2σ2

0n
tr(Gn)

1
2σ2

0n
tr(Gn) 1

n

∑n
i=1G

2
n,ii

02×2

02×2 02×2

 ,

µ4 is the forth order central moment of ξi,t which requires E |ξi,t|4+ε <∞ for some positive ε, and
Gn,ii is the (i, i) entry of Gn = WnS

−1
n (ψ0). For the fixed effects ηi, we have

√
T (η̂i,nT − ηi,0)

d→
N
(
0, σ2

0

)
for i = 1, · · · , n and they are asymptotically independent with each other.

For the situation that n is larger than T , it is still consistent despite the limiting distribution
is non-centralized. Under some regularity assumptions, the QMLE should also be

√
nT−consistent

and asymptotic normality when n/T → ∞. As this short panel situation is not associated with
most applications of conditional heteroskedasticity models and the limiting distribution is quite
complicated, we will not show it here.

When εi,t is known as standard normal or t−distribution, the only difference between quasi-
4See Section 3 of Yu, de Jong and Lee (2008)
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log-likelihood functions is that σ2
0 is known. The asymptotic distribution of θ̂nT when n/T → 0

has exactly the same form as the general situation. Additionally, as we can back out µ̂i,nT from
η̂i,nT and their difference is just a constant, for i = 1, · · · , n, we have

√
T (µ̂i,nT − µi,0)

d→ N
(
0, σ2

0

)
and they are asymptotically independent with each other. One may concern whether ξi,t satisfies
E |ξi,t|4+ε < ∞ for some positive ε. As the existence of positive order moments of log-χ2 random
variables can be derived from its moment generating function, m (t) = 2tΓ

(
t+ v

2

)
/Γ
(
v
2

)
, which

is showed in Appendix A.7 in Peter M.Lee (2012). As ξi,t is log − χ2 (1) or linear combination of
two independent log-χ2 random variables when εi,t is normal or t−distributed, the requirement of
(4 + ε) moment is satisfied.

In Section 4, the finite sample performance of the QMLE will be investigated by Monte Carlo
simulations. Since our model is focused on time-varying conditional variance, a typical application
should be the case when T is relatively larger than n. Thus, the Monte Carlo simulations will focus
on this scenario.

3.4 A Modified LM Test for Normality

Sometimes, we may be interested in testing whether the true residual process of εi,t is standard
normal distribution. One potential scenario is forecasting. If the true distribution is normal, then
we can estimate all the parameters including the individual fixed effect, and also perform out-
of-sample prediction for conditional log-volatility with constructing confidence intervals. Another
purpose for the normality test is for testing whether the risk is asymmetric due to leverage effect
and extreme tail risks. In our ESPARCH(1,1) model, since the QMLE is based on ln ε2i,t and
σ2 = V ar

(
ln ε2i,t

)
is one of our estimator, we can construct the normality test based on σ2 which

had been suggested in literature of stochastic volatility models, such like Ruiz (1994). When
εi,t

i.i.d∼ N (0, 1), V ar
(
ln ε2i,t

)
= 1

2π
2 ≈ 4.9348. Let H0 : σ2 = 1

2π
2 and H1 : σ2 6= 1

2π
2, if we reject

H0, then the true distribution of εi,t is N (0, 1) can also be rejected.
To test H0, the most convenient way is to estimate the model under the normal assumption,

and then to implement LM test. From (16), based on the concentrated likelihood function, we can
get the first order condition for σ2:

∂H̃n,T (ψ)

∂σ2
= − nT

2σ2
+

1

2 (σ2)
2

T∑
t=1

[
Sn (λ) Z̃t − (γIn + ρWn) Z̃t−1

]′
·
[
Sn (λ) Z̃t − (γIn + ρWn) Z̃t−1

]
Thus, under H0, given the constrained estimator ψ̄ from (13), the score function for σ2 should be

gσ2

(
ψ̄
)

= −nT
π2

+
2

π4

T∑
t=1

ū
′

c,tūc,t

where ūc,t = Sn
(
λ̄
)
Z̃t − (γ̄In + ρ̄Wn) Z̃t−1 .

However, due the concentrated likelihood approach and the existence of the fixed effect terms,
the limiting distribution of 1√

nT

∂H̃n,T

∂σ2 is not centralized around zero, thus traditional LM test
statistic does not have the proper limiting distribution. To construct a test statistic with regular
limiting distribution, we need to modify the score function as well as the information matrix. Define

11



g
(
ψ̄
)
and H

(
ψ̄
)
as the following:

gn,T
(
ψ̄
)

=
(
gσ2

(
ψ̄
)

+
n

π2
, 0, 0, 0

)′

and

Hn,T

(
ψ̄
)

= T

(
4µ4

π4
− 3

)
n
π4

1
π2 tr(Gn)

1
π2 tr(Gn)

∑n
i=1G

2
n,ii

02×2

02×2 02×2


− E

(
∂2H̃n,T

(
ψ̄
)

∂ψ′∂ψ

)
(17)

where µ4 is the forth order central moment of log − χ2 (1) distribution and it equals to 170.46
approximately.5

By Claim 2 in Yu, de Jong and Lee (2008), we have
JNorm = g

′

n,T

(
ψ̄
)
H−1n,T

(
ψ̄
)
g

′

n,T

(
ψ̄
) d→ χ2 (1) (18)

when T/n→∞.
However, we need to be careful that constructing the normality test based on variance of ln ε2i,n

is not perfect. Although the only difference among the QMLEs for normal and non-normal situation
is the parameter σ2, we can not rule out the case, that εi,t is not normal, but V ar

(
ln ε2i,n

)
are close

to π2

2 . Also, in equation (17) , the asymptotic variance matrix contains forth order moment of
ln ε2i,t. If both the second and forth order moment are close to log−χ2 (1) distribution, the test will
not have enough power to reject the normality assumption. Fortunately, it is not a serious problem,
since the asymptotic variance of QMLE is also only based on second and forth order moments which
exactly comes from the terms in Hn,T

(
ψ̄
)
. If the second order and forth order central moments

of ln ε2i,t are very close to log − χ2 (1) , then the asymptotic variance of the QMLE will also be
very close to the case when εi,n is normal, thus fail to reject the normality assumption in this
situation will not affect further statistical inference too much. In Section 4, we will investigate the
finite sample performance of the JNorm statistic, and also provide an example for the lack of power
scenario mentioned here.

4 Monte Carlo Simulations for Finite Sample Performance

4.1 Basic Settings

In this section, we try to perform some Monte Carlo simulations to see whether the QMLE under
different assumptions has good finite sample properties. By simulating multiple samples from the
data generating process (DGP), and then implementing the QMLE procedure, we can evaluate the
performance of QMLE for different sample sizes. We will replicate each Monte Carlo simulation
exercise by 1,000 times.

5The approximation values are generated by the following approach implemented by Matlab: generate 1,000
samples with 10 million random draws from the target distributions, and then take the mean of the sample moments
as the approximation. For other simulated moments used in this paper, the approach is the same.
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To simulate the DGP, we need first to simulate the spatial correlations among regions which
satisfy Assumptions 1-8 of Yu, de Jong and Lee (2008). Here we construct the row-stochastic
nearest neighbor spatial weight matrix Wn = (wij,n) using LeSage’s econometrics toolbox6. The
procedure is:
1. Generate two random vectors of coordinates as the geographic location for each observation;
2. Find l nearest neighbors for each observation according to their spatial distances and denote the
corresponding wij,n = 1, otherwise wij,n = 0;
3. Row-normalize Wn.
In this paper, we consider two situations when l = 3 and l = 6.

For the fixed effect term µi , in the simulation exercises, we assume µi is a random draw from
i.i.d uniform distribution on [0, 1]. For each simulation exercise, we use the same µi for all the 1,000
replications. For other parameters, we consider the following two sets: (λ1, γ1, ρ1) = (.4, .2,−.3)

and (λ2, γ2, ρ2) = (−.3, .4, .2). For σ2 in unknown situations, the true values depend on the true
distribution of εi,n, which we will give a detailed illustration in the following sections.

4.2 Performance of QMLE under Normal Assumption

When εi,n
iid∼ N (0, 1), the QMLE can be implemented by the procedure described in Section 3.1.

The initial value of each parameter in each round of simulation are set to zero. Observation of time
0 is generated from N (0, 1). The finite sample performance of QMLE under different sample sizes
are reported in Table 1 and 2. During the concentrated likelihood process, the performance of the
QMLE of µ would be coincident with the performance of other parameters which are not reported
here for simplicity. In Table 1 and Table 2, the performance of QMLE are evaluated by five indexes:
mean, standard deviation, median, upper and lower quantiles. In both of the cases, as T getting
larger, the performance are getting better. When T is relatively large (≥ 100), as long as n is much
smaller than T , the performance of QMLE will be good. We also tried some other combinations of
n and T , like n = 100, T = 100 and n = 150, T = 100, the performances are similar to the results
showed here with n = 30, T = 100 .

4.3 Performance of QMLE under t−distribution Assumption

When εi,n
iid∼
√

v−2
v t (v) with v ≥ 3, the third and higher order moments of εi,n exist, the QMLE

procedure is similar to Normal case despite the assumed known σ2 is different in the QMLE and
concentrated QMLE functions. In this section, we show the simulation results for the case v = 3. As

6See https://www.spatial-econometrics.com

13



Table 1: Finite Sample Performance for N (0, 1) Case When l = 3

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

λ γ ρ λ γ ρ

mean .3859 .1626 -.2743 -.2947 .3467 .1763
n=10 std .0550 .0560 .0800 .0782 .0550 .1012

med .3870 .1615 -.2765 -.2941 .3476 .1790
T=30 q0.25 .3473 .1260 -.3300 -.3452 .3091 .1050

q0.75 .4254 .1997 -.2225 .2431 .3865 .2466
mean .3964 .1903 -.2923 -.3001 .3849 .1921

n=10 std .0315 .0295 .0416 .0422 .0291 .0574
med .3972 .1906 -.2923 -.2993 .3856 .1924

T=100 q0.25 .3751 .1711 -.3205 -.3282 .3648 .1516
q0.75 .4175 .2106 -.2641 -.2709 .4038 .2313
mean .3980 .1881 -.2933 -.2979 .3858 .1932

n=30 std .0200 .0170 .0242 .0266 .0172 .0337
med .3988 .1881 -.2933 -.2988 .3859 .1933

T=100 q0.25 .3852 .1768 -.3097 -.3157 .3745 .1696
q0.75 .4120 .2002 -.2778 -.2799 .3971 .2160

Table 2: Finite Sample Performance for N (0, 1) Case When l = 6

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

λ γ ρ λ γ ρ

mean .3776 .1594 -.2743 -.3131 .34739 .1738
n=10 std .0735 .0575 .0951 .1254 .0519 .1595

med .3829 .1609 -.2801 -.3087 .3473 .1723
T=30 q0.25 .3363 .1202 -.3346 -.3970 .3108 .0707

q0.75 .4288 .1985 -.2085 -.2254 .3830 .2823
mean .3940 .1896 -.2931 -.3018 .3842 .1910

n=10 std .0398 .0291 .0526 .0710 .0295 .0903
med .3965 .1896 -.2908 -.3020 .3836 .1899

T=100 q0.25 .3681 .1698 -.3295 -.3512 .3640 .1273
q0.75 .4197 .2097 -.2560 -.2535 .4039 .2535
mean .3965 .1887 -.2932 -.2982 .3848 .1938

n=30 std .0249 .0177 .0331 .0390 .0167 .0480
med .3956 .1890 -.2925 -.2967 .3842 .1921

T=100 q0.25 .3799 .1770 -.3164 -.3249 .3742 .1613
q0.75 .4126 .2001 -.2702 -.2724 .3952 .2243
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Table 3: Finite Sample Performance for
√

1
3 t (3) Case When l = 3

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

λ γ ρ λ γ ρ

mean .3842 .1559 -.2793 -.2907 .3456 .1765
n=10 std .0562 .0580 .0826 .0852 .0553 .1050

med .3837 .1559 -.2804 -.2913 .3445 .1756
T=30 q0.25 .3464 .1181 -.3356 -.3478 .3089 .1092

q0.75 .4217 .1970 -.2270 -.2362 .3862 .2487
mean .3949 .1877 -.2931 -.2991 .3833 .1935

n=10 std .0301 .0317 .0442 .0443 .0300 .0598
med .3960 .1869 -.2922 -.2989 .3824 .1969

T=100 q0.25 .3747 .1677 -.3240 -.3293 .3638 .1561
q0.75 .4144 .2085 -.2629 -.2688 .4038 .2327
mean .3976 .1880 -.2924 -.2997 .3858 .1952

n=30 std .0186 .0183 .0271 .0266 .0173 .0339
med .3975 .1881 -.2933 -.3003 .3854 .1934

T=100 q0.25 .3850 .1761 -.3091 -.3178 .3741 .1725
q0.75 .4097 .1992 -.2749 -.2816 .3974 .2187

v increases, the t- distribution will approaching to N (0, 1), then the performance of QMLE would
be closer to the Normal case. With

√
v−2
v t (v) as the distribution of observation at time 0, and

the same zero initial value settings for parameters, Table 3 and 4 show the performance of QMLE
with the same sample sizes and true parameters in Table 1 and 2. Similar to the performance for
Normal case, as T goes larger, the bias shrinks as long as n/T → 0 .

4.4 Performance of QMLE with Unknown Residual Distribution

When the distribution of εi,t is unknown, we can still estimate the parameters despite µ using the
QMLE method shown in Section 3.3. In this part, we considered three different distributions of
εi,t to simulate three different situations that standard Normal residuals can not capture. With
the same parameter and sample size settings as before, by maximizing the QMLE showed in (14),
we investigate the finite sample performance for different situations. The only difference is that
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Table 4: Finite Sample Performance for
√

1
3 t (3) Case When l = 6

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

λ γ ρ λ γ ρ

mean .3808 .1590 -.2721 -.3030 .3449 .1622
n=10 std .0725 .0599 .1025 .1231 .0564 .1644

med .3883 .1593 -.2710 -.2954 .3452 .1676
T=30 q0.25 .3359 .1176 -.3418 -.3811 .3075 .0650

q0.75 .4302 .2007 -.2015 -.2188 .3826 .2643
mean .3943 .1876 -.2939 -.3053 .3850 .1949

n=10 std .0374 .0310 .0542 .0659 .0297 .0876
med .3970 .1870 -.2923 -.3028 .3841 .1978

T=100 q0.25 .3701 .1674 -.3303 -.3463 .3649 .1343
q0.75 .4201 .2092 -.2589 -.2618 .4073 .2513
mean .3978 .1889 -.2935 -.2977 .3853 .1935

n=30 std .0259 .0181 .0344 .0382 .0177 .0489
med .3977 .1888 -.2926 -.2965 .3854 .1946

T=100 q0.25 .3809 .1766 -.3171 -.3221 .3730 .1615
q0.75 .4151 .2016 -.2698 -.2721 .3981 .2250

the expectation and variance of ln ε2i,t are unknown. So, we can still linearize the model by taking
logarithm. However, it can not identify µi terms and also we need to introduce an additional
parameter σ2 as V ar

(
ln ε2i,t

)
. Thus, unlike the known situation, the performance of σ̂2

QMLE also
needs to be evaluated.

The first situation we consider is the fat tail risk. To simulate it, we use εi,t
iid∼ 1√

3
t (3). From

the analysis before, the distribution of ln ε2i,t is the difference between independent log−χ2 (1) and
log−χ2 (3), plus ln

(
1
3

)
. Then, the expectation and variance of ln ε2i,t are ψ

(
1
2

)
− ψ

(
3
2

)
= −2 and

1
2π

2 + ψ
′ ( 3

2

)
≈ 5.8696 respectively, because ψ (z + 1)− ψ (z) = 1

z for any positive number z. The
finite sample performance of this situation is reported in Table 5 and 6.

Another situation is when a price limit policy or circuit breakers mechanism exists in the market.
When the upper bond and lower bond of claim prices or the range of change are limited, the volatility
will also be affected. For example, in mainland China, the daily price change of a stock are limited
to 10% in both Shanghai and Shenzhen Stock Exchange except for some special occasions. In Japan,
South Korea, France, etc, similar policies are implemented. In some markets, the currency prices
are also limited in daily exchange. The price limit will also affect the volatility of stock returns,
which is investigated in finance literature, e.g. , Subrahmanyam (1994) and Kim and Rhee (1998).
Thus, sometimes putting limit on volatility is more reasonable due to the existence of the price
limit. To simulate this specific situation, we use εi,t

iid∼ Uniform
[
−
√

3,
√

3
]
which has a bonded

support. Then, the density function of ln ε2i,t is

f (x) =

√
3

6
exp

(
1

2
x

)
, x ∈ (−∞, ln 3]
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where we can derive that E
(
ln ε2i,t

)
= ln 3− 2 and V ar

(
ln ε2i,t

)
= 4. The finite sample performance

of this situation is reported in Table 7 and 8.
Finally, we consider the situation when the risk is asymmetric, i.e. the return is skewed. Due

to leverage effect and risk of extreme bad events, i.e. “black swan” incidents, many asset prices and
returns would be skewed. Finance literature had investigated the skewness of US stock returns, e.g.,
Harvey and Siddique (2000) and Chang, Christofferen and Jacobs (2013). To capture the skewness,
we consider to use extreme value distribution for εi,t which has the density function:

f (x) = exp

{
π√
6

(x− γEM )− exp

{
π√
6

(x− γEM )

}}
, x ∈ R (19)

where γEM is the Euler-Mascheroni constant and γEM = limn→∞
(
− lnn+

∑n
k=1

1
k

)
≈ 0.5772.

The skewness of this distribution is − 12
√
6

π3 ζ (3) ≈ −1.14 where ζ (·) is the Riemann zeta function.
The distribution is derived from extreme value theory, which is widely used to capture extreme
risk in financial system, e.g. McNeil and Frey (2000) and Poon, Rockinger and Tawn (2004). The
extreme value distribution we use here has a fatter and longer tail on the left-hand side, capturing
the larger impact of bad events to investors. By using simulation, the mean and variance of ln ε2i,t
are approximately equal to -1.37 and 4.89 respectively. Table 9 and 10 show the performance of
QMLE in this scenario.

By the results showed in Table 5-10, we can see when the distribution of εi,t is unknown, the
finite sample performance is similar to the case when we know the true distribution of εi,t is normal
or Student’s t. As T increases, the bias is shrinking as long as T/n also getting smaller. The levels
of biases for λ, γ and ρ are also similar to results showed in Table 1-4 when the sample size is the
same. Also, for σ2 , the variance of ln ε2i,t, the QMLE estimator has good performance for the all
the three situations. Combining the results from Section 4.1 to Section 4.4, we can see that using
the density of normal distribution to build up QMLE is a good way to estimate the ESPARCH(1,1)
model. For variant situations with considering different types of risks, the finite sample estimators
perform well for small samples.
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Table 5: Finite Sample Performance for Unknown
√

1
3 t (3) Case When l = 3

σ2 ≈ 5.87

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

λ γ ρ σ2 λ γ ρ σ2

mean .3924 .1562 -.2755 5.6420 -.3064 .3480 .1891 5.5664
n=10 std .0605 .0574 .0812 .7220 .0902 .0542 .1136 .7160

med .3976 .1571 -.2782 5.5892 -.3031 .3485 .1872 5.5077
T=30 q0.25 .3533 .1167 -.3311 5.1516 -.3640 .3126 .1097 5.0692

q0.75 .4335 .1978 -.2202 6.0903 -.2468 .3867 .2630 5.9948
mean .3969 .1886 -.2922 5.8217 -.2879 .3839 .1950 5.7795

n=10 std .0314 .0317 .0419 .4168 .0462 .0292 .0581 .3947
med .3965 .1877 -.2925 5.7900 -.2980 .3849 .1960 5.7729

T=100 q0.25 .3766 .1684 -.3192 5.5310 -.3291 .3634 .1561 5.5018
q0.75 .4183 .2109 -.2651 6.0963 -.2653 .4044 .2330 6.0410
mean .3969 .1882 -.2943 5.7962 -.3002 .3852 .1946 5.7881

n=30 std .0197 .0175 .0264 .0243 .0259 .0170 .0324 .2296
med .4003 .1880 -.2950 5.7873 -.3008 .3851 .1954 5.7925

T=100 q0.25 .3866 .1763 -.3135 5.6314 -.3167 .3738 .1724 5.6381
q0.75 .4131 .1999 -.2760 5.9518 -.2827 .3960 .2165 5.9366

Table 6: Finite Sample Performance for Unknown
√

1
3 t (3) Case When l = 6

σ2 ≈ 5.87

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

λ γ ρ σ2 λ γ ρ σ2

mean .3876 .1567 -.2720 5.5864 -.3169 .3452 .1763 5.5510
n=10 std .0734 .0595 .1024 .7206 .1326 .0565 .1636 .6988

med .3931 .1561 -.2722 5.5210 -3121 .3438 .1764 5.5165
T=30 q0.25 .3432 .1157 -.3398 5.0804 -.3993 .3067 .0674 5.0433

q0.75 .4419 .1958 -.2008 5.9998 -.2342 .3839 .2778 6.0157
mean .3942 .1862 -.2919 5.7910 -.3042 .3836 .1884 5.7818

n=10 std .0381 .0304 .0566 .4171 .0713 .0299 .0893 .4049
med .3958 .1861 -.2918 5.7610 -.3009 .3844 .1901 5.7850

T=100 q0.25 .3705 .1661 -.3306 5.5106 -.3525 .3637 .1327 5.4903
q0.75 .4199 .2068 -.2522 6.0679 -.2558 .4030 .2454 6.0632
mean .3976 .1875 -.2931 5.7896 -.3008 .3859 .1940 5.8086

n=30 std .0252 .0188 .0345 .2380 .0384 .0172 .0508 .2372
med .3982 .1874 -.2951 5.7881 -.3019 .3855 .1942 5.8020

T=100 q0.25 .3820 .1751 -.3168 5.6316 -.3268 .3749 .1631 5.6449
q0.75 .4143 .2008 -.2712 5.9355 -.2755 .3974 .2251 5.9666
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Table 7: Finite Sample Performance for Unknown U
[
−
√

3,
√

3
]
Case When l = 3

σ2 = 4

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

λ γ ρ σ2 λ γ ρ σ2

mean .3936 .1567 -.2711 3.8002 -.3011 .3479 .1823 3.8274
n=10 std .0581 .0549 .0787 .6160 .0849 .0555 .1075 .5956

med .3953 .1546 -.2735 3.7561 -.3028 .3500 .1826 3.7999
T=30 q0.25 .3571 .1185 -.3251 3.3890 -.3601 .3118 .1098 3.4089

q0.75 .4329 .1937 -.2216 4.2081 -.2435 .3826 .2550 4.1882
mean .3964 .1875 -.2932 3.9538 -.3018 .3842 .1947 3.9556

n=10 std .0332 .0313 .0440 .3643 .0487 .0300 .0593 .3423
med .3974 .1883 -.2969 3.9323 -.3020 .3828 .1952 3.9394

T=100 q0.25 .3741 .1647 -.3233 3.6912 .3636 .3636 .1561 3.7163
q0.75 .4181 .2090 -.2645 4.1842 .4026 .4026 .2364 4.1643
mean .3995 .1881 -.2929 3.9458 -.2993 .3856 .1928 3.9502

n=30 std .0191 .0183 .0262 .2024 .0283 .0283 .0347 .2023
med .3990 .1891 -.2940 3.9448 -.2992 .3867 .1920 3.9525

T=100 q0.25 .3867 .1764 -.3102 3.8022 -.3183 .3733 .1709 3.8148
q0.75 .4122 .2000 -.2761 4.0868 -.2803 .3974 .2160 4.0788

Table 8: Finite Sample Performance for Unknown U
[
−
√

3,
√

3
]
Case When l = 6

σ2 = 4

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

λ γ ρ σ2 λ γ ρ σ2

mean .3814 .1594 -.2790 3.8574 -.3117 .3484 .1760 3.8180
n=10 std .0719 .0556 .1034 .6281 .1183 .0524 .1597 .6444

med .3899 .1587 -.2808 3.8148 -.3060 .3480 .1773 3.7475
T=30 q0.25 .3335 .1205 -.3533 3.4135 -.3874 .3112 .0661 3.3790

q0.75 .4346 .1969 -.2060 4.2552 -.2295 .3841 .2860 4.2158
mean .3959 .1878 -.2924 3.9546 -.3038 .3834 .1931 3.9595

n=10 std .0411 .0313 .0578 .3677 .0737 .0298 .0915 .3587
med .3971 .1883 -.2918 3.9139 -.3046 .3843 .1929 3.9338

T=100 q0.25 .3698 .1659 -.3312 3.6984 -.3504 .3644 .1381 3.7223
q0.75 .4230 .2086 -.2542 4.1892 -.2538 .4043 .2567 4.1855
mean .3978 .1868 -.2939 3.9517 -.3025 .3850 .1935 3.9478

n=30 std .0283 .0176 .0342 .2062 .0387 .0169 .0543 .2057
med .3991 .1868 -.2936 3.9506 -.3024 .3852 .1950 3.9508

T=100 q0.25 .3803 .1753 -.3154 3.8131 -.3260 .3737 .1634 3.8078
q0.75 .4156 .1984 -.2721 4.0904 -.2768 .3968 .2302 4.0800

19



Table 9: Finite Sample Performance for Unknown EV Case When l = 3

σ2 ≈ 4.89

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

λ γ ρ σ2 λ γ ρ σ2

mean .3872 .1606 -.2763 4.7104 -.3087 .3459 .1821 4.6739
n=10 std .0605 .0566 .0811 .7101 .0853 .0564 .1112 .6906

med .3907 .1596 -.2783 4.6445 -.3088 .3485 .1833 4.6321
T=30 q0.25 .3513 .1217 -.3318 4.2034 -.3658 .3114 .1092 4.1850

q0.75 .4277 .1992 -.2222 5.1490 -.2518 .3836 .2555 5.1090
mean .3980 .1880 -.2910 4.8315 -.3018 .3850 .1954 4.8250

n=10 std .0300 .0317 .0436 .3669 .0464 .0295 .0600 .3790
med .3993 .1881 -.2932 4.8117 -.3012 .3854 .1966 4.8067

T=100 q0.25 .3786 .1675 -.3223 4.5670 -.3337 .3660 .1531 4.5616
q0.75 .4188 .2084 -.2618 5.0707 -.2711 .4036 .2350 5.0661
mean .4000 .1878 -.2922 4.8423 -.2996 .3852 .1925 4.8449

n=30 std .0198 .0183 .0268 .2120 .0268 .0167 .0381 .2178
med .4006 .1876 -.2934 4.8439 -.2992 .3851 .1923 4.8370

T=100 q0.25 .3873 .1750 -.3101 4.6938 -.3178 .3743 .1701 4.6940
q0.75 .4136 .2000 -.2740 4.9930 -.2824 .3956 .2175 4.9946

Table 10: Finite Sample Performance for Unknown EV Case When l = 6

σ2 ≈ 4.89

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

λ γ ρ σ2 λ γ ρ σ2

mean .3816 .1588 -.2765 4.6974 -.3134 .3463 .1677 4.6793
n=10 std .0717 .0578 .1087 .6845 .1315 .0551 .1694 .6756

med .3845 .1597 -.2740 4.6340 -.3082 .3481 .1720 4.6314
T=30 q0.25 .3369 .1181 -.3508 4.2146 -.3946 .3090 .0579 4.1874

q0.75 .4321 .1990 -.2060 5.1251 -.2251 .3846 .2799 5.1076
mean .3944 .1876 -.2913 4.8291 -.3080 .3840 .1885 4.8254

n=10 std .0403 .0313 .0560 .3919 .0716 .0291 .0982 .3744
med .3950 .1858 -.2907 4.8117 -.3034 .3844 .1929 4.8080

T=100 q0.25 .3676 .1662 -.3265 4.5680 -.3542 .3653 .1255 4.5538
q0.75 .4229 .2076 -.2560 5.0849 -.2590 .4021 .2552 5.0638
mean .3978 .1877 -.2944 4.8379 -.3030 .3851 .1919 4.8369

n=30 std .0245 .0176 .0341 .2082 .0395 .0170 .0577 .2044
med .3984 .1872 -.2944 4.8317 -.3032 .3853 .1958 4.8380

T=100 q0.25 .3810 .1759 -.3168 4.6916 -.3305 .3740 .1627 4.6806
q0.75 .4154 .1994 -.2725 4.9859 -.2773 .3970 .2266 4.9771
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4.5 Performance of Normality Test

In this section, we investigate the finite sample performance of the JNorm statistic for normality
which we derived in Section 3.4. To simulate the test size and test power for different situations,
we simulate the samples by setting εi,t follows the distributions used in the previous sessions:

N (0, 1),
√

1
3 t (3), U

[
−
√

3,
√

3
]
and the extreme value distribution with density function showed

by (19). With 1,000 times replications, we can get the empirical probability of rejections by using
the asymptotic critical value at α = 0.05. The results of the simulated size and power using the
asymptotic critical value are showed in Table 11, 12 and 13. Additionally, simulated critical values
for p = 0.1, p = 0.05 and p = 0.01 are reported in Table 14 and Table 15.

From Table 11, 14 and 15, we can see that the size and critical values of the JNorm in general are
approaching the asymptotic values, but for different adjacent correlations and different parameter
settings, the finite sample performance varies a lot. For both of our two parameter settings, the
critical values are closer to asymptotic values for l = 6 situation, which may indicate our test
may have better performance for more densely connected networks than sparse ones. For sparse
situation when l = 3, i.e. each individual only has three neighbors, using asymptotic critical values
will over-reject H0 by nearly 5% more chance even when we have 200 periods observations. By
contrast, for the more dense case l = 6, the over-reject rate will be less than 2%.

In general, for finite sample application, the JNorm test statistic is applicable but we need to
be cautious. If the network or spatial correlation considered is sparse, it will have a larger chance
to make Type I error when sample size is small. In this situation, it may be better to simulate the
distribution of JNorm statistic for the sample size you considered, rather than using the asymptotic
value of χ2 (1).

For test power, the results are more interesting. From Table 12 and 13, when the distributions
of εi,t are

√
1
3 t (3) and U

[
−
√

3,
√

3
]
, the test power for finite sample is good. For both n = 10 and

n = 30, as T increases from 30 to 200, the test power by using asymptotic critical value converges
to 1 fast for both parameter settings. However, for extreme value distribution, the test power is
pretty small. In our simulation exercises, even the largest test power is around 10%, which is not
of strong power. In fact, for the parameter settings and adjacent matrix we use here, even with
n = 50 and T = 1000, the test power will be less than 30%. Obviously, our modified LM test is
powerless in this particular situation.

The reason for a lack of power issue is exactly the limitation we mentioned in Section 3.4.
Although the difference between the standard normal distribution and the extreme value distribu-
tion we considered in Section 4.4 is quite obvious, after taking square and natural logarithm, their
variance and fourth order moments are both very close. By our simulation, when εi,n have the
density function as in (19), the variance and fourth order central moment are approximately 4.89
and 170.72 which are very close to what we have for log−χ2 (1). As our test statistic is constructed
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Table 11: Test Size of JNorm (χ2
0.95 (1) = 3.8415)

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

n T l = 3 l = 6 l = 3 l = 6

10
30 .113 .073 .065 .048
100 .099 .069 .059 .045
200 .092 .058 .054 .052

30
30 .084 .043 .064 .041
100 .092 .065 .061 .052
200 .077 .061 .057 .051

by only second and fourth order moments, the difference is so small to be distinguished with finite
samples. In fact, the distribution of ln ε2i,t after re-centralization at zero is very close for these two
distributions, not only for the two particular moments. Although the density function of standard
normal and EV are quit different which are showed in Figure 1, after the log-square transformation
and re-centralization, the distributions are very similar despite tails.

In Figure 2, we show the simulated CDFs of the two processes which are estimated by kernel
density method based on 100000 random samples. The only significant difference between these
two distributions is the magnitude of left tail probability where the values of two random variables
are both less than negative 3 times the variance. In fact, with smaller sample size, similar to our
JNorm statistic, non-parametric Kolmogorov-Smirnov (K-S) test also faces lack of power issue even
if it use more information from the sample than our test. We simulated 10000 times for the test
power of K-S statistic for three different sample size, and report the results in Table 16. When the
sample size is 1000, the test power of K-S is less than 10% when α = 0.05, which is very similar to
the power of JNorm. Even increasing the sample size to 5000, we still have less than 50% of chance
to correctly distinguish the two distributions. Since our QMLE is based on ln ε2i,t, fail to reject the
normality of εi,t will not affect our statistical inference seriously, we don not have to worry the lack
of power issue in this situation which we discussed before in Section 3.4.
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Table 12: Test Power of JNorm When l = 3 (χ2
0.95 (1) = 3.8415)

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

n T
√

1
3 t (3) U

[
−
√

3,
√

3
]

EV
√

1
3 t (3) U

[
−
√

3,
√

3
]

EV

10
30 .225 .414 .093 .198 .404 .055
100 .668 .823 .097 .625 .777 .062
200 .950 1 .112 .928 .956 .087

30
30 .673 .767 .085 .553 .744 .075
100 .991 .997 .082 .987 .994 .060
200 1 1 .094 1 1 .076

Table 13: Test Power of JNorm When l = 6 (χ2
0.95 (1) = 3.8415)

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

n T
√

1
3 t (3) U

[
−
√

3,
√

3
]

EV
√

1
3 t (3) U

[
−
√

3,
√

3
]

EV

10
30 .213 .399 .058 .185 .367 .063
100 .645 .800 .064 .605 .754 .062
200 .926 .959 .058 .911 .959 .049

30
30 .588 .747 .064 .540 .723 .055
100 .992 .991 .065 .991 .994 .066
200 1 1 .068 1 1 .065

Table 14: Simulated Critical Values of JNorm When l = 3

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

n T .1 .05 .01 .1 .05 .01

10
30 4.2272 6.2467 14.6318 3.1822 4.3007 6.1742
100 3.8308 5.4743 9.8324 2.9027 4.0807 6.8274
200 3.5140 5.3132 8.9933 2.7984 4.0245 6.3566

30
30 3.4224 5.3055 9.1624 3.0261 4.2566 6.7994
100 3.5865 5.3535 9.5370 3.0883 4.1514 7.5637
200 3.8205 5.1297 8.3532 3.0586 4.0961 6.6775

Table 15: Simulated Critical Values of JNorm When l = 6

(λ1, γ1, ρ1) = (.4, .2,−.3) (λ2, γ2, ρ2) = (−.3, .4, .2)

n T .1 .05 .01 .1 .05 .01

10
30 3.2527 4.6289 8.2464 2.7346 3.7093 6.2319
100 3.0831 4.4957 7.5095 2.7555 3.6425 6.7524
200 3.1494 4.4324 7.1762 2.8433 4.1054 6.6510

30
30 2.7133 3.6259 6.8676 2.5756 3.4757 6.3536
100 3.0378 4.6709 8.2586 2.8496 3.8673 7.5614
200 2.9709 4.2578 7.2924 3.0428 3.8904 7.2347
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Figure 1: Density Function of N (0, 1) and EV

Table 16: Simulated Test Power of Two Sample K-S Test For Re-centralized ln ε2i,t
α = .1 α = .05 α = .01

n = 1000 .1394 .0751 .0169
n = 5000 .5477 .4196 .2026
n = 10000 .9013 .7926 .5566
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Figure 2: Comparison of Kernel CDF of 100,000 Random Sample of Re-centralized ln ε2i,t

5 Application: Risk Spillover Among Eurozone Countries

5.1 Data Description

When considering the links among economies, the risk spillover from one country to another through
geographical links is important and persistent. Historically, due to limitations of transportations,
political and economical incidents that happens in one country will only affect its neighboring
countries through trades and migrations. Although the economy are globally linked in modern
society, most trade and economic integration organizations are still based on regional corporations
among nearby countries, such like NAFTA and EU. In the long run, asset returns associated with
one country will fluctuate due to risk in neighboring countries. Thus, their conditional volatility
of those assets will be spatially correlated. In this section, we are going to investigate the risk
spillovers among some eurozone economies by focusing on the stock markets.

Eurozone, officially called the euro area, is a monetary union of 19 member states of the European
Union that adopted the euro as their primary currency and sole legal tender. The beginning of the
eurozone is January 1, 1999, with 11 original countries: Belgium, Germany, Spain, France, Italy,
Netherland, Portugal, Austria, Finland, Luxembourg and Ireland. In this paper, we will focus on
the economic links among these 11 countries.

The assets we will investigate are the prices of common stock shares of companies associated
with a country traded on national or foreign stock exchanges. OECD provides monthly share price
index of each country which is constructed by averaging the prices of common stock shares and
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then calculating the relative prices comparing to the average price in 20157. Using this national
index portfolio constructed by OECD, we can better capture the whole picture of a country’s
economic and financial market, especially for the small local companies which are not included in
more widely used stock indexes suck like SP500, FTSE100, etc. Since small local companies depend
on the domestic market more than large companies in general, portfolios including stocks of these
small companies can reflect more domestic risk of economy, it would be better when considering
the country-level risk spillovers.

For each country i, we can construct the monthly return rate (%) of this national portfolio
return of month t by

MRi,t = (Pi,t − Pi,t−1) /Pi,t−1 ∗ 100

where Pi,t is the relative share price of country i in month t comparing to price in 2015. Then, we
can further construct the monthly stock return innovation of country iby

RIi,t = MRi,t −MRi,t−1

If no information updated, at equilibrium, the expectation of aggregate stock return in an
economy should be a constant at equilibrium. Thus, in the long-run, the expectation of national
stock return innovation should be zero. Table 17 reports summary statistics of the monthly stock
return innovations PRIi we constructed for the 11 original countries in eurozone, from March 1999
to April 2021. Table 18 shows the correlation coefficients between the PRIis of these 11 countries
for the 266 sample months. From Table 17, for all the 11 eurozone countries, the expectation of their
monthly stock return innovation in the sample period is close to zero, but very volatile. Comparing
the standard deviation and extreme values of monthly return innovations, the financial markets in
south European countries, such as Portugal, Italy and Spain, are relatively more volatile than other
countries. This indicates that the financial risk may link to geographical factors. In Table 18, it is
obvious that the links among financial markets of each eurozone country are strong. For any two
countries in our sample, the correlation coefficients among their monthly stock return innovation
are larger than 0.4. However, their correlations seem to have no geographical links which conflicts
with Table 17. The correlations among three south European countries are not very strong. In
contrast, although Finland and Ireland are not adjacent to other eurozone countries, their financial
conditions seem to have stronger correlations with others, even stronger than many neighborhood
countries.

To further investigate the properties of the stock return innovation processes, in Table 19, we
report the results of ADF test of unit root, KPSS test for stationarity (intercept only) and Engle’s
ARCH test for conditional heteroskedasticity. To including momentum and seasonal effect, we use
the 12 periods lags. On one hand, for all the countries, the existence of unit root is rejected. On
the other hand, despite for Ireland, Engle’s test rejects the homoskedasticity assumption. Thus,
conditional volatility models are needed to capture the dynamic of RIi,t’s. In Figure 2, we can
also see the heteroskedasticity across time directly from the plots of RI2i,t processes. It seems like

7Citation: OECD (2021), Share prices (indicator). doi: 10.1787/6ad82f42-en. For details about how the data
constructed, see https://data.oecd.org/price/share-prices.htm
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Table 17: Summary Statistics of Stock Return Innovations (%)
Mean S.D. Minimum Maximum

Belgium .0204 6.0182 -23.7896 28.2239
Germany .0006 6.0780 -26.9865 21.5954
Spain .0178 7.3668 -31.3490 30.7723
France .0054 6.0733 -22.8660 23.5420
Italy .0395 7.3879 -32.5638 28.9739

Netherland .0295 5.5467 -23.1061 19.4025
Portugal -.0034 9.0223 -26.9166 51.9512
Austria .0073 5.4106 -24.6367 27.3145
Finland .0157 5.6129 -23.7090 23.3261

Luxembourg .0260 5.7835 -22.2640 27.0218
Ireland .0181 6.637 -27.5134 31.5424

Table 18: Sample Correlation Coefficients Between Stock Return Innovations
BEL DEU ESP FRA ITA NLD PRT AUT FIN LUX IRL

BEL 1
DEU .82 1
ESP .71 .61 1
FRA .78 .67 .55 1
ITA .78 .69 .58 .70 1
NLD .77 .72 .64 .63 .64 1
PRT .66 .58 .43 .57 .52 .49 1
AUT .80 .72 .54 .74 .69 .67 .83 1
FIN .93 .87 .75 .79 .76 .78 .69 .84 1
LUX .92 .80 .71 .77 .79 .75 .73 .87 .94 1
IRL .87 .86 .70 .74 .70 .79 .61 .76 .91 .86 1

GARCH type models should be suitable. However, from the sample autocorrelation and partial
correlation functions shown in Figure 4 and Figure 5, the order of autoregression of RI2i,t processes
are not clear. For most countries, both ACF and PACF of RI2i,t cut edge for more than one-
month lags and show strong positive correlation with only one month lag, which is not typical for
an autoregressive process. For Spain, the ACF and PACF are even more wired, with irregular
correlations with lagged terms. The wired shape of ACFs and PACFs can be evidence of risk-
spillovers, which can not be explained by any time-series autoregressive terms.
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Table 19: ADF, KPSS and Engle’s ARCH Test Results (Lag=12)
BEL DEU ESP FRA ITA NLD RPT AUT FIN LUX IRL

ADF -7.52 -7.39 -6.79 -6.88 -7.07 -7.88 -7.98 -7.12 -7.01 -7.35 -7.30
p−value .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
KPSS .0257 .0247 .0224 .0266 .0318 .0321 .0237 .0248 .0272 .0261 .0245

p−value8 >.10 >.10 >.10 >.10 >.10 >.10 >.10 >.10 >.10 >.10 >.10
Engles’s 28.84 26.19 40.78 38.40 39.10 19.94 44.73 46.55 34.21 34.72 21.03
p−value .00 .01 .00 .00 .00 .07 .00 .00 .00 .00 .15

5.2 Empirical Specification and Results

To capture the risk spillovers between the monthly stock return innovations, the major specification
we consider is the ESPARCH(1,1) model proposed in Section 2.2:

RIi,t = σi,tεi,t, εi,t
iid∼(0,1)

lnσ2
i,t = µi + λ

n∑
j=1

wij,n lnRI2j,t + γ lnRI2i,t−1 + ρ

n∑
j=1

wij,n lnRI2j,t−1 (20)

where i indicates the 11 original countries of eurozone and March 1999 is treated as the original
time period (t = 0).

For the network between the countries, we consider four different specifications. We denote
the network weighting matrices as Wadjacent, Wdistinv, Wdist2inv and WEU . These four specifica-
tions satisfy the standard assumption of spatial weighting matrix: the diagonal elements are all
zeros. However, the interactions between countries were constructed differently. The first specifi-
cation, Wadjacent, is constructed based on the adjacent relationship between countries. If country
i and j share a boarder on the land, then wij,adjacent = 1. Otherwise wij,adjacent will be assigned

8For KPSS test p-valus, Matlab reports the p-value larger than .10 as .10, not the exact p-value
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Figure 3: Plot of RI2i,t Processes
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Figure 4: Sample Autocorrelation Function of RI2i,t Processes
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Figure 5: Sample Partial Autocorrelation Function of RI2i,t Processes
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as zero. For Finland and Ireland, as they do not share a boarder with any other original euro-
zone countries, all the elements associated with these two countries will be zero. Then, despite
the two zero rows, we do row normalization for all non-zero rows, i.e. normalize wij,adjacent as
wij,adjacent/

(∑11
j=1 wij,adjacent

)
, to make sure the neighborhood effect is normalized. Thus, in

these network specifications, risk spillovers are assumed to happen through direct land neighbor-
hood relationships, and isolated countries are assumed not sharing or receiving any risk spillovers.

The second and third specifications, Wdistinv and Wdist2inv, are constructed by the distances
among the capital cities of each country. Using Google Map, we can measure the great-circle
distance between any two points on the earth, which is the shortest distance between two points
on the earth’s surface9. Denote dij be great-circle distance between the marks of capital cities of
country i and j on the Google Maps, each element of Wdistinv is normalized inverse of the distance,
i.e. wij,distinv = 1

dij
/
(∑11

j=1
1
dij

)
. ForWdist2inv, each element wij,dist2inv = 1

d2ij
/
(∑11

j=1
1
d2ij

)
which

is the normalized inverse of the square of distance. Thus, both of these two specifications use the
distance between capitals to approximately measure the geographical distance between countries,
and assume the risk spillovers are decreasing with the distance between countries. The difference
between these two specifications is how the spillover effect is decreasing. Obviously, Wdistinv puts
less weights on the nearby countries and more weights on faraway countries, which assume the
spillover decreasing slower than Wdist2inv specification.

Finally, the last specification WEU has the simplest form, where wij,EU = 1
10 for any i 6= j. In

this specification, we employ the linear-in-mean type of network formation inside the eurozone, and
using equal weights for the link between any two countries. As eurozone countries share the same
central bank and have some common monetary policies, any country inside is affected by other
member countries no matter how far away they are. By using these specification, we assume the
risk spillover are transmitted through institutional links instead of geographical links although the
eurozone itself is based on the geographical concept of Europe.

In Table 20, we implement the normality test constructed in Section 3. 4 for each specification
and report the test results. For Wadjecent, as normality is not rejected, we implement the QMLE
under the normality assumption in Section 3.1. For the other three specifications, the normality
is rejected, so we implement the QMLE with unknown distribution in Section 3.3. The estimation
results are reported in Table 21. The value of quasi log-likelihood function and the AIC value are
also shown as well as asymptotic standard deviation of each parameter. We also report McFadden’s
pseudo-R2 as a comparision between the intercept only model. Since our QMLE approach is based
on linearization, we can also compare models on another dimension, which is Efron’s pseudo R2 for
fitness of ln y2i,t processes. As Efron’s pseudo-R2 is calculated by the same way as regular R2 for
linear regression, i.e. sum of square of estimated residual divided by sum of square of independent
variables, we can use it to compare the models on how much variance of ln y2i,t can be explained by
the models. It is a convenient measure and only works for linearized models.

For all the four different specifications, λ and ρ are significant both economically and statistically,
which indicates strong spillover effects across the stock returns of the 11 eurozone economies. By

9Here we use an online website using Google Map API which provides the measure of great-circle distance between
any two cities on the earth: https://www.distancefromto.net
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introducing risk spillovers, all of our four specifications fit the data much better then intercept only
model which is showed by the relatively large value of McFadden’s pseudo R2. As the magnitude
of λ is much larger than ρ, intra-temporal interactions among the markets affect the stock return
innovations much more than dynamic spillovers from the history. Also, we should notice that
both λ and ρ are much larger than γwhich captures the dynamic effect from own history. The
larger volatility elasticity to the historical volatility of neighboring countries, may indicate that
investors care more about what happened in neighboring economists than domestic, which is quite
an interesting observation. A potential reason for the larger intra-temporal elasticity to neighbors
would be that we focus on monthly stock returns, the strong intra-temporal spillover effects contain
the interactions during the trading time and absorb dynamic spillovers at daily and even shorter
frequency. Due to current Internet technology, serious incidents that happen in a country will be
known globally within a few minutes or hours, so it is really hard to separate the dynamic and
instantaneous reactions unless focusing on high frequency trading data. In general, the results
showed in Table 20 indicate strong spillover patterns in conditional volatility.

Another interesting question is how does the risk spread from one country to the whole eurozone.
Clearly, the quasi-log-likelihood function and Efron’s pseudo R2 ofWadjacent are much smaller than
the other three specifications. AsWadjacent only captures the neighborhood relationship of countries
sharing land borders, it is the most narrow channel of risk spillovers among the four specifications.
In real world, especially for the financial markets and modern economic interactions, it is clearly too
narrow thus not a good enough approximation to capture the networks of risk spillovers. Especially,
in this specification, Finland and Ireland are treated as isolated countries. However from Table 18,
we can clearly see that their stock return innovations are closely correlated with other eurozone
countries. For the other three specifications, we can see the results of Wdistinv and WEU are pretty
close, and their quasi-log-likelihood function are larger thanWdist2inv. It indicates that the channel
of risk spillover inside the eurozone is relevant with geographical links, but not decreasing with the
distance among countries too much. When putting more weights on faraway countries, the estimated
intra-temporal risk spillover λ is getting larger, from zero weights in Wadjacent to all equal weights
in WEU . The results also indicate that the institutional links among eurozone countries seem to
play a more important role than geographical distance during risk spreading across countries, as
WEU gives us the best model with respect to both AIC criteria and Efron’s pseudo R2. However, it
is only marginally better thanWdistinv for the sample period we consider. Thus, without additional
information, we can not tell whether distance is important or not in the risk-spreading network.
Without additional information and data, we can only say these two specifications both capture
the long-term persistent links at similar level.
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Table 20: JNorm Test Results for Different Spatial Correlations
JNorm Statistic p-Value

Wadjacent .1581 .6909
Wdistinv 17.7100 .0000
Wdist2inv 10.6971 .0011
WEU 20.7423 .0000

Table 21: Major Specification for Different Spatial Correlations
Wadjacent Wdistinv Wdist2inv WEU

σ2
4.1053*** 4.2818*** 4.0382***
(.0351) (.0375) (.0346)

λ
.3005*** .5455*** .4634*** .5752***
(.0353) (.0399) (.0457) (.0353)

γ
.0808*** .0479*** .0565*** .0456***
(.0198) (.0185) (.0194) (.0175)

ρ
.1219*** .0925** .0942** .0750*
(.0464) (.0542) (.0586) (.0495)

quasi-LogLike -6467.5 -6272.5 -6330.5 -6249.2
AIC 12963.0 12575.0 12691.0 12528.4

McFadden R2 .3266 .3469 .3409 .3493
Efron R2 .1357 .2659 .2343 .2777
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5.3 Comparison With Traditional Conditional Heteroskedasticity Mod-
els

To evaluate the performance of our model, we also need comparison with existing conditional
heteroskedasticity models. As benchmarks, we try to compare our model with two most popular
single-variate conditional heteroskedasticity models: GARCH(1,1) purposed in Bollerslev (1986)
and EGARCH(1,1) in Nelson (1991). For the monthly stock return innovation of each country i,
assume RIi,t = σi,tεi,t where εi,t

i.i.d∼ N (0, 1). If it follows GARCH(1,1) process, we should have
σ2
i,t = αi + βiσ

2
i,t−1 + γiRI

2
i,t−1

If it follows EGARCH(1,1), we should have
lnσ2

i,t = κi + θi lnσ2
i,t−1 + ξiε

2
i,t−1 + ιi (|εi,t| − E |εi,t|)

By estimating each country’s monthly stock return innovation process in our sample, the perfor-
mance of fitting GARCH(1,1) and EGARCH(1,1) are reported in Table 21 and Table 22. Both the
models are estimated by maximum likelihood approach.

The results in Table 22 and 23 show us the drawbacks when we ignore the risk spillovers through
networks and only focusing on individual assets. Although for each country, the GARCH(1,1) and
EGARCH(1,1) can capture some dynamic of conditional volatilities, combining all 11 countries as
a whole, the results are not as good as our Log-SPARCH(1,1) model. Comparing to the results
in Table 21, the sum of log-likelihood is much smaller than all the specifications in Section 5.2.
Even comparing toWadjecent, the worst network approximation, the sum of log-likelihood is around
40% less. The performance of EGARCH(1,1) is slightly better than GARCH, perhaps due the
flexibility of asymmetric risks and leverage effect. However, it is still much worse than results of
ESPARCH(1,1). Considering that they have more parameters combined, the performance is even
relatively worse shown by the sum of AIC of each individual model.

After comparing with single variate conditional volatility models, we can also compare the per-
formance of our model with other multivariate conditional volatility models. To capture the stable
long-run relationships between different assets’ volatility, one popular model is multivariate GARCH
model with constant correlation (CCC) developed in Bollerslev (1990). For yt = (y1,t, · · · , yn,t)

′
,

the DGP of CCC model is

E (yt|Ft−1) = 0

V ar (yt|Ft−1) = Ωt

σ2
i,t = ωi + αiσ

2
i,t−1 + βiy

2
i,t−1

σij,t = ρijσi,tσj,t

where Γ = {ρij} is the correlation matrix of yt, σi,t and σij,t are the variance and covariance terms
of Ωt. In Table 24, we report the maximum likelihood estimation results of the constant correlation
multi-variate GARCH model.

Another popular multivariate GARCH model is dynamic conditional correlation specification
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(DCC) suggested in Engle (2002) and then further simplified by Aielli (2013). It is a more flexible
model allowing the covariance terms be changing over time. The conditional covariance matrix of
yt is assumed as V ar (yt|Ft−1) = D

1/2
t RtD

1/2
t , where Rt ≡ [ρij,t] is the conditional correlation

matrix and Dt ≡ diag (h1,t, · · · , hn,t) is a diagonal matrix with the asset conditional variances as
diagonal elements. By construction, Rt is the conditional covariance matrix of the standardized
return innovations, εt ≡ [ε1,t, · · · , εn,t]

′
, where εi,t ≡ yi,t/

√
hi,t . In DCC model, the diagonal

elements of Dt are modeled as univariate GARCH models:

hi,t = ωi + αihi,t−1 + βiy
2
i,t−1

which is similar to CCC model. The conditional correlation matrix is then modeled as a function
of the past standardized RIi,t, which is

Rt = Q
∗−1/2
t QtQ

∗−1/2
t

where
Qt = (1− λ1 − λ2)S + λ1ε

′

t−1εt−1 + λ2Qt−1

and Qt ≡ [qij,t]n×n , Q∗t ≡ diag (q11,t, · · · , qnn,t), S ≡ [sij ]n×n, and λ1 and λ2 are nonnegative
scalars which satisfy λ1 +λ2 < 1. In Table 25, we report the maximum likelihood estimation results
of the dynamic conditional correlation multi-variate GARCH model. For convenience, we will not
report Ŝ since it contains too many terms.

Comparing the results in Table 21 and Table 24, our ESPARCH(1,1) model also outperforms
the multivariate GARCH model with constant correlations when explaining the conditional volatil-
ity of monthly stock return innovations of the 11 eurozone countries. With fewer parameters, the
estimated log-likelihood function is much larger than multivariate GARCH, even for the worst
Wadjacent. The reason is simple. Although multivariate GARCH model is more flexible with allow-
ing different individual level autoregressive correlations and the correlations among different assets,
the interactions of conditional variance terms are totally ignored. Comparing to results in Table
25, the conclusion is similar. With a good approximation of stable networks among the countries,
both intra- and inter-temporal correlations can be captured by ESPARCH(1,1) specification. Thus,
from our example, when the long-run network structure among markets is clear and easy to be
described by some proper approximations, our ESPARCH(1,1) model is a better choice to capture
the dynamic structure of conditional volatility than existing models without considering network
correlations, even if our model does not directly consider correlations among the returns and is less
flexible on the autoregressive effects.
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Table 22: GARCH (1,1) Estimation Results For Each Country
αi βi γi LogLike AIC

BEL
25.3197*** .0000 .2908***

-840.8 1687.6
(5.7665) (.1874) (.0935)

DEU
19.7952** .3082 .1468*

-851.2 1708.4
(9.8641) (.3172) (.0834)

ESP
4.3624** .7305*** .1850**

-878.7 1763.4
(1.9513) (.0916) (.0729)

FRA
2.7939** .7684*** .1668***

-839.7 1685.4
(1.3259) (.0625) (.0558)

ITA
1.8181** .8336*** .1431***

-885.0 1775.9
(.8809) (.0296) (.0360)

NLD
2.2968** .8009*** .1366***

-821.7 1649.4
(1.0861) (.0562) (.0452)

PRT
26.4918*** .0369 .6853***

-916.6 1839.1
(4.2140) (.0761) (.1365)

AUT
7.2264*** .5003*** .2550***

-806.2 1618.3
(2.1463) (.1191) (.0874)

FIN
2.9993** .7306*** .1889***

-822.2 1650.3
(1.4738) (.0731) (.0636)

LUX
11.8708*** .2592* .4108***

-822.4 1650.7
(2.748) (.1511) (.1320)

IRL
2.3281 .8089*** .1538***

-869.3 1744.6
(1.5525) (.0645) (.0506)

Sum of Log-Likelihood: -9353.6
Sum of AIC: 18773.1
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Table 23: EGARCH (1,1) Estimation Results For Each Country
κi θi ξi ιi LogLike AIC

BEL
.5279** .8434*** .3247*** -.2848***

-833.0 1674.0
(.2225) (.0631) (.0990) (.0783)

DEU
.2719 .9221*** .0953 -.2037**

-850.1 1708.1
(.2927) (.0806) (.0991) (.0933)

ESP
.2372** .9381*** .2902*** -.0926

-877.1 1762.1
(.1070) (.0285) (.0917) (.0666)

FRA
.1232 .9571*** .1128 -.3317***

-831.7 1674.3
(.1012) (.0276) (.0752) (.0863)

ITA
.1788** .9544*** .2198*** -.1228

-881.5 1770.9
(.0731) (.0189) (.0610) (.0791)

NLD
.3060** .9104*** .2434*** -.1735**

-817.6 1643.1
(.1237) (.0376) (.0776) (.0799)

PRT
2.1029*** .4793*** 1.0000*** -.9783

-914.0 1835.9
(.4145) (.1036) (.1624) (.1010)

AUT
.2377 .9193*** .2316*** -.3082***

-798.4 1604.7
(.1576) (.0490) (.0857) (.0808)

FIN
.1619 .9413*** .1513 -.3627***

-812.6 1633.2
(.1281) (.0380) (.1009) (.0984)

LUX
.5101* .8400*** .2834*** -.2872***

-817.0 1641.9
(.2949) (.0880) (.1046) (.1044)

IRL
.1514 .9546*** .1943** -.2791***

-859.6 1727.1
(.1222) (.0327) (.0919) (.0984)

Sum of Log-Likelihood: -9293.7
Sum of AIC: 18675.3
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Table 24: Multivariate GARCH with CCC Estimation Results
ωi αi βi

BEL
1.8419* .8590*** .0837***
(1.0211) (.0471) (..0213)

DEU
1.9730** .8648*** .0773***
(.8499) (.0386) (.0227)

ESP
1.4508* .8648*** .0989***
(.7677) (.0416) (.0316)

FRA
3.2654** .7889*** .1077***
(1.3643) (.0650) (.0320)

ITA
3.1068** .8282*** .1014***
(1.2426) (.0425) (.0292)

NLD
1.6480** .8597*** .0810***
(.6819) (.0353) (.0235)

PRT
18.198*** .1977* .5970***
(5.4876) (.1109) (.0940)

AUT
2.8688*** .7700*** .1123***
(.9141) (.0443) (.0249)

FIN
1.6850*** .8528*** .0818***
(.5045) (.0277) (.0169)

LUX
2.8512*** .7822*** .1118***
(.9429) (.0481) (.0245)

IRL
2.4934** .8290*** .1051***
(1.0300) (.0394) (.0260)

Log-Likelihood: -7417.0
AIC: 14900.0
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Table 25: Multivariate GARCH with DCC Estimation Results
ωi αi βi λ1 λ2

.1048*** .6851***
(.0148) (.0420)

BEL
7.0076*** .6799*** .2305***
(2.5125) (.0731) (.0387)

DEU
2.6344*** .8319*** .1490***
(1.003) (.0357) (.0299)

ESP
2.9656** .8120*** .1630***
(1.3026) (.0462) (.0386)

FRA
4.9371*** .7154*** .2145***
(1.6703) (.0633) (.0510)

ITA
4.8557*** .7679*** .1986***
(1.6906) (.0449) (.0414)

NLD
2.3643** .8320*** .1199***
(.9429) (.0389) (.0265)

PRT
16.0833*** .2639*** .7869***
(4.4069) (.0706) (.1080)

AUT
3.9910*** .7311*** .1920***
(1.1043) (.0397) (.0277)

FIN
3.4676*** .7843*** .1671***
(.8504) (.0332) (.0242)

LUX
5.3657*** .6950*** .2202***
(1.2887) (.0467) (.0311)

IRL
4.2313*** .7766*** .1784***
(1.3581) (.0371) (.0299)

Log-Likelihood: -7304.7
AIC: 14921.4
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6 Conclusion

With introducing spatial autoregressive terms into exponential ARCH type of models, we give a new
model specification, ESPARCH(1,1), to capture the volatility spillover through network. By this
extension, the new model can capture both intra-temporal interaction among markets and dynamic
spillover from history. Due to the log-volatility structure, it is easier to discuss the stationarity
and develop likelihood based estimation method. Since it can be transformed into a linear dynamic
spatial panel, the QMLE has good asymptotic properties. In finite sample, simulation results
show that the QMLE works well when the sample period is larger than number of individuals. In
addition, to test normality of residuals, we develop a modified LM test and simulate its performance.
When we apply it to monthly stock return innovations of euro-zone countries, we identify strong
interactions among capital markets of 11 original euro-zone countries, through geographical and
institutional links. Also, our model has better performance than existing ARCH/GARCH type of
models.
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