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Introduction
Motivation

I Networks: geographical, trade, institutional, etc
I Idiosyncratic risk=⇒Network=⇒Systematic Risk

1. Intra-temporal: interactions among traders and policy makers
2. Inter-temporal: reactions on observed historical fluctuations on

asset prices

=⇒ need a new model to capture spillover at volatility level to
capture both effects



Introduction
Literature Review

1. Networks and Finance: Kou et al. (2017), Richmond (2019)
2. Conditional Heteroskedasticity: Bollerslev (1990), Engle and

Kroner (1995), Engle (2002)
3. Test for Volatility Spillovers between Two Markets: Hong et al.

(2001)



Model Formation
Alternative Model Specifications

I Not easy to get a proper extension

I yt = σtεt , εt
i .i .d∼ (0, 1)

I Extending from linear ARCH/GARCH:
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I Wn = (wij ,n)n×n : spatial correlation matrix among n markets,
where wij ,n captures the spillover from market i to market j

I For regularity, we assume wij ,n ≥ 0 and wii ,n = 0 for every
i , j = 1, · · · , n



Model Formation
Alternative Model Specifications

I Seems straightforward from SAR, however not a good model:

1. hard to derive moments and other properties
2. hard to be estimated

I Consider the simplest case without inter-temporal terms:
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Model Formation
Alternative Model Specifications

I Vector Form:[
In − λWndiag

(
ε2t
)]

y2
t = diag (µ) ε2t

I Two situations:

1. ε continuous on R =⇒
[
In − λWndiag

(
ε2t
)]−1 can not be

simplified
2. ε with bounded support:

y2
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λl
[
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(
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diag (µ) ε2t

=⇒ extremely hard to derive moments, also hard to establish
bijection projection



Model Formation
DGP of ESPARCH(1,1) Model

I Extension from EGARCH and focus on dynamic of conditional
log-volatility:

ln
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I where g (x) = ln x2 for x 6= 0
I λkwij ,ng (yj ,t−k) captures the inter-temporal spillover effect

from i to j on conditional volatility s > 0 periods ago
I When s = 0, it captures the intra-temporal spillover effect



Model Formation
DGP of ESPARCH(1,1) Model

I ESPARCH(1,1):

yi ,t = σi ,tεi ,t , εi ,t
iid∼(0,1)
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I The order of spatial lag and time lag are both 1, i.e. we only
consider risk-spillover through one particular network and only
consider dynamic effect from the previous period



Model Formation
DGP of ESPARCH(1,1) Model

I Economic Meaning
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I λ, γ and ρ capture the elasticity of conditional volatility with
respect to the volatility of other assets and historical volatility
of its own and other assets



Model Formation
Covariance Stationarity of ln y2

i,t

I VAR form for any fixed n:

logY 2
t = (In − λWn)−1 (γIn + ρWn) logY 2

t−1

+ (In − λWn)−1 (µ+ ω) + (In − λWn)−1 ξt

I E
(
logε2t

)
= ω and ξt = logε2t − ω, (In − ρWn)−1 exists

I Necessary condition for stationarity:∥∥∥(In − λWn)−1 (γIn + ρWn)
∥∥∥
∞
< 1

I When Wn is row-normalized, i.e.
∑n

j=1 wij = 1 for ∀i , we need
|λ|+ |γ|+ |ρ| < 1



QMLE and Asymptotic Properties
QMLE for Normal Disturbance

I εi ,t
i .i .d∼ N (0, 1)=⇒E

(
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I Let logY 2
t = Zt and η = µ− 1.27ln where ln =
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n
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,

we have

Zt = η + λWnZt + (γIn + ρWn)Zt−1 + ξt

I Based on this linearized model, we can use QMLE method
using Normal density as approximation



QMLE and Asymptotic Properties
QMLE for Normal Disturbance

I Assume normality of ξt , then the conditional quasi-log-density
function for t = 1, · · · ,T is
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QMLE and Asymptotic Properties
QMLE for Normal Disturbance

I FOC of η: − 2
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QMLE and Asymptotic Properties
QMLE for non-Normal Disturbance: t-distribution

I t-distribution:εi ,t
i .i .d∼

√
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)
I By similar process as Normal situation, we can estimate the

parameters by QMLE



QMLE and Asymptotic Properties
QMLE for non-Normal Disturbance: unknown distribution

I distribution of εi ,t unknown: similar way

I concentrated QMLE: with var
(

ln ε2i ,n

)
= σ2, we have
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I limitation: fixed effect µ can not be identified since E
(
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)
is unknown



QMLE and Asymptotic Properties
Asymptotic Properties

I Based on Yu et al. (2008), when n/T → 0, for ψ =
(
σ2, θ

′
)′

,
we have
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 for

E |ξi ,t |4+ε <∞
I For normal and t-distribution scenario, no σ2 terms (restricted

model)



QMLE and Asymptotic Properties
Asymptotic Properties

I Fixed effect η: for i = 1, · · · , n
√
T (η̂i ,nT − ηi ,0)

d→ N
(
0, σ2

0
)

I asymptotically independent with each other
I For n/T →∞ situation, still consistent but asymptotic

distribution is not symmetric and depend on the the
distribution of ξ



QMLE and Asymptotic Properties
Test for Normality

I Want to test whether εi ,t is normal ⇒ forecast and construct
confidence interval

I Similar to stochastic volatility models, due to
log-transformation, no way to directly test normality

I Ruiz (1994): test based on moment of ln ε2i ,t , i.e.
H0 : σ2 = 1

2π
2 v.s. H1 : σ2 6= 1

2π
2

I FOC of σ2 for unrestricted model:
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QMLE and Asymptotic Properties
Test for Normality

I Modified LM statistic: for gn,T
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QMLE and Asymptotic Properties
Test for Normality

I Limitation of the JNorm statistic: only use second order and
third order moment

I For some particular distribution, ln ε2i ,t can be close to log-χ2

e.g. extreme value distribution

I Not a huge problem: not affect inference on parameters of
risk-spillovers



Monte Carlo Simulations
Basic Settings

I Simulation network adjacent weighting matrix:

1. Generate two random vectors of coordinates as the geographic
location for each observation;

2. Find l nearest neighbors for each observation according to
their spatial distances and denote the corresponding wij ,n = 1,
otherwise wij ,n = 0;

3. Row-normalize Wn

I We consider two different situations when l = 3 and l = 6



Monte Carlo Simulations
Basic Settings

I Fixed effect µi : random draw from i .i .d uniform distribution
on [0, 1]

I Parameters: (λ1, γ1, ρ1) = (.4, .2,−.3) and
(λ2, γ2, ρ2) = (−.3, .4, .2)

I We replicate each Monte Carlo simulation exercise by 1,000
times

I True value of σ2 depends on the distribution of εi ,n



Monte Carlo Simulations
Normal Situation



Monte Carlo Simulations
t−distribution Situation



Monte Carlo Simulations
Unknown Distribution

I We consider the following three distributions:

1. εi ,t
iid∼ 1√

3
t (3)

2. Subrahmanyam (1994) and Kim and Rhee (1998):

εi ,t
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[
−
√
3,
√
3
]

3. Harvey and Siddique (2000) and Chang, Christofferen and
Jacobs (2013): Extreme value distribution

f (x) = exp

{
π√
6

(x − γEM)− exp
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π√
6

(x − γEM)

}}
, x ∈ R



Monte Carlo Simulations
Unknown Distribution



Monte Carlo Simulations
Unknown Distribution



Monte Carlo Simulations
Unknown Distribution



Monte Carlo Simulations
Performance of Normality Test

I Test size: as T goes larger, approaching to theoretical value,
over reject when sample size is small



Monte Carlo Simulations
Performance of Normality Test

I Test Power: serious lack of power issue when true distribution
of εi ,t follows extreme value distribution, work well for other
scenarios



Monte Carlo Simulations
Performance of Normality Test

I Problem: distributions of ξi ,t are too similar



Monte Carlo Simulations
Performance of Normality Test

I Non-parametric Kolmogorov-Smirnov test also hard to
distinguish these two distribution with small samples

I Since second and third moments are very close, does not affect
statistical inference



Application: Risk Spillover Among Eurozone Countries
Data Description

I 11 original eurozone countries: Belgium, Germany, Spain,
France, Italy, Netherland, Portugal, Austria, Finland,
Luxembourg, Ireland

I monthly share price index constructed by averaging the prices
of common stock returns, then calculating the relative prices
comparing to the average price in 2015 (provided by OECD
database)

I Construct monthly return innovation:

MRi ,t = (Pi ,t − Pi ,t−1) /Pi ,t−1 ∗ 100

RIi ,t = MRi ,t −MRi ,t−1

I Time window: March 1999 to April 2021, 266 sample months



Application: Risk Spillover Among Eurozone Countries
Data Description

I Summary Statistics:



Application: Risk Spillover Among Eurozone Countries
Data Description

I Correlations:



Application: Risk Spillover Among Eurozone Countries
Data Description

I Unit root, stationarity and ARCH tests: stationary with ARCH
type heteroskedasticity



Application: Risk Spillover Among Eurozone Countries
Data Description

I However, the AC and PAC functions of the return innovations
are not regular, no clear evidence for autoregressive effects



Application: Risk Spillover Among Eurozone Countries
Empirical Specification and Results

I ESPARCH(1,1) specification:

RIi ,t = σi ,tεi ,t , εi ,t
iid∼(0,1)

lnσ2
i ,t = µi+λ

n∑
j=1

wij ,n lnRI 2j ,t+γ lnRI 2i ,t−1+ρ
n∑
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I Four different networks with row-normalized adjacent matrices
:

1. Wadjacent : neighborhood defined by land adjacent relationship
2. Wdistinv : inverse of distance among capital cites
3. Wdist2inv : inverse of square of distance among capital cites
4. WEV : same weight for every other countries



Application: Risk Spillover Among Eurozone Countries
Empirical Specification and Results

I Pre-estimation normality test:



Application: Risk Spillover Among Eurozone Countries
Empirical Specification and Results

I Major Specification Results:



Application: Risk Spillover Among Eurozone Countries
Empirical Specification and Results

1. WEU is the best approximation of volatility spillovers in
eurozone, which indicates that institutional links are more
important economic links among the eurozone countries than
geographical links (consistent with results in Blasques et al.
(2016))

2. Both intra- and inter-temporal spillovers dominate the effect
from own past history, which indicates risk transmission
through network might be a more important pattern than
time-series effect. For investors and policy makers, risk
management should not only focus on local market.



Application: Risk Spillover Among Eurozone Countries
Comparison With Traditional Conditional Heteroskedasticity Models

1. single variate GARCH(1,1) in Bollerslev (1986):

σ2
i ,t = αi + βiσ

2
i ,t−1 + γiRI

2
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2. single variate EGARCH(1,1) in Nelson (1991):
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3. multivariate GARCH with constant correlation (CCC) in
Bollerslev (1990):
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Application: Risk Spillover Among Eurozone Countries
Comparison With Traditional Conditional Heteroskedasticity Models

4. multivariate GARCH with dynamic conditional correlation (DCC)
in Engle (2002) and Aielli (2013):
Var (yt |Ft−1) = D

1/2
t RtD

1/2
t , where Rt ≡ [ρij ,t ] is the conditional

correlation matrix and Dt ≡ diag (h1,t , · · · , hn,t) is a diagonal
matrix with the asset conditional variances as diagonal.Rt is the
conditional covariance matrix of the standardized return
innovations, εt ≡ [ε1,t , · · · , εn,t ]

′
, where εi ,t ≡ yi ,t/

√
hi ,t elements

hi ,t = ωi + αihi ,t−1 + βiy
2
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∗−1/2
t QtQ
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Qt = (1− λ1 − λ2) S + λ1ε
′
t−1εt−1 + λ2Qt−1

Qt ≡ [qij ,t ]n×n , Q∗t ≡ diag (q11,t , · · · , qnn,t), S ≡ [sij ]n×n, and λ1
and λ2 are nonnegative scalars which satisfy λ1 + λ2 < 1



Application: Risk Spillover Among Eurozone Countries
Comparison With Traditional Conditional Heteroskedasticity Models

I Our ESPARCH(1,1) model dominates the other specifications
when comparing likelihood value and AIC criteria:

I With less parameters, our model can explain the conditional
heteroskedasticity of eurozone stock return innovations better
than existing models by introducing network risk spillovers


