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Introduction
Motivation

@ Heterogeneity: individuals (or regions) = social network (or
spillovers)

© Gender difference in friendships : different interaction with classmates
at school = heterogeneous peer effect on education outcome

@ Different city size: different level of externality received from
neighborhood areas to local housing market

@ Traditional Moran's [ test is derived under homogeneous spatial
correlations, which is not suitable for heterogeneous cases

@ Single test is not enough for both existence and heterogeneity



Introduction

Empirical Interests

@ Matvos and Ostrivsky (2010): Mutual funds with some particular
types tend to oppose other funds in corporate director elections

@ Yakusheva, Kapinos and Eisenberg (2014): Females are subject to
peer influence in weight gain, with little evidence of peer effects for
males in a natural experiment design for college student roommate
assignment

@ Patacchini, Rainone and Zenou (2017): Peer effects on educational
outcomes depend on the length of friendship



Introduction

Theoretical Literatures

@ Moran (1950), Cliff and Ord (1973): derive the Moran's / test statistic

@ Kelejian and Prucha (2001): derive the asymptotic property of
Moran's [ statistic for spatial autoregressive model (SAR)

© Aquaro, Bailey and Pesaran (2020): spatial panel model with
individual level heterogeneous coefficients



Heterogenous Coefficient Spatial Autoregressive Model
Basic Settings

e n individual spatial units in the economy located in a region D, C RY,
where |D,| =n

e distance among individuals satisfy dj; > 1 for any i # j

@ K groups of individuals: K sub-regions {Dﬁ}le inside D, where K
is constant and does not depend on n

@ neighborhood relationship may not depend on DX, for example, male
and female students can be assigned into the same class



Heterogenous Coefficient Spatial Autoregressive Model

Model Formation and Interpretation

@ DGP of HSAR model:
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@ wj;: spatial weights, w; >0 and w; =0
@ Ay neighborhood effect received by individual i € Dr’j

e f3: effects from other regressors



Heterogenous Coefficient Spatial Autoregressive Model

Model Formation and Interpretation

@ Matrix Form:

Yn= }Lan,k WnYn+Xnﬁ +u,

K

k=1

o W, =(wy)

® Hpy =diag(dik - ,dnk): diagonalized matrix of group dummy
vectors, Y K_, Hpx =1y

nxpn- SPatial weighting matrix

@ Without group heterogeneity, the model reduced to a standard SAR
model: y, =AW, y,+ XoB + up



Heterogenous Coefficient Spatial Autoregressive Model

Economic Foundation

@ Similar to SAR model, the HSAR can be regarded as a Nash
equilibrium of a static complete information game with the following
individual utility function:

Ui(}/i)— (lkz Wijyj +XIB+VI) }/2,

Jf

@ It can also be interpreted as a social interaction setting:

2
1 n
ui (yi) = yi i +vi) =5 (J/f A Y, WWJ)
— =1

private utility

conformity effect with friends



Heterogenous Coefficient Spatial Autoregressive Model
Likelihood Function

o With assuming u, ~ N (0,G2I,,), the log-likelihood function is:

InL, (A’,ﬁ,c;?) - —gln(Qﬂ)—glnG2+ln\Sn(A)]
1

- 202 (Sn(N)yn— Xnﬁ)l (Sn(A)yn = XaB)

o A=A, k) and Sp(A) = Iy — LIy AeHo i Wy
e To make sure S,(A) is invertible, a sufficient condition is
maxi | Al <

o Computationally cumbersome to maximize when sample size is large
due to In|S,(A)] term



Test 1: Existence of Spatial Correlation
Test Statistic

@ Ho: Ak =0 for Vk=1,--- ,K vs. Hy:3k, A, #0

@ Given MLE for linear regression model 6= (O,[%l,c?z) , We can obtain
the FOC of constrained estimator:
o oL (8) N 1
8k,n (9) = T = ? (}/n _XnB) Hn,k Woyn = ?U Hn7k Whyn

o Let g, (é) = alnsg(é) =

gin (é) 8K (é) 0, 0  then the LM test

FOC of other parameters
statistic is:

[ 9%InL, (6 A
m=-0(6) (Tot?) (9



Test 1: Existence of Spatial Correlation
Asymptotic Distribution: Sketch of Proof

@ Jointly asymptotic Normal<=> asymptotic Normal for any linear
combinations

!
o Let a= (a1, -+ ,ak) be an arbitrary vector of real numbers, we want
to discuss:

( ) Zakgn()— 5 Uy Han Wi

e With proper assumptions similar in Jenish and Prucha (2001) and Lee
(2004), we have the following form:

\;fn <a,§> = 621\5 (A/,,u,,+ ul,,Bnun> +0p(1)

@ H,n, Anand B, are nx n matrices



Test 1: Existence of Spatial Correlation
Asymptotic Distribution: Sketch of Proof

@ Two scenarios with different spatial weighting matrix:

(1) \fA u, dominates fu B,u,: apply Lyapunov CLT

Q \[A u, does not dominate: apply CLT for linear quadratic form in
Jenish and Prucha (2001)

—> Asymptotic Normality of ﬁfn (a,é)

= Jointly asymptotic Normality of %gk,n <é>s



Test 1: Existence of Spatial Correlation
Asymptotic Distribution: Sketch of Proof

@ The asymptotic covariance matrix follows likelihood equality:

Eo (%) Y E, (alnaLg(e) amaLé,l(e)) ~0

@ Degree of freedom is K with the following regularity assumption:
. Dk .
@ Forvk=1,--- K, we have Ilm,,_m|—n‘ = cx where ¢, is a non-zero

positive constant and Zszl ck =1, i.e. there exist a stationary
distribution of types as n— oo and the probability of each type would
not shrink to zero.

@ Empirically, as long as you have large enough observations for each
type, there is no problem

o Thus, we have LM; % %2 (K)



Test 2: Heterogeneity among Spatial Correlation
Test Statistic

© Hy:pr=-—=pkvs. Hi:pi#p;,3i#]j

@ Given QMLE of SAR model 6 = (/_\/,B/,62> , we can obtain the FOC
of constrained estimator:

_. dInL,(6 1, _ B
hin (9) = n&?fk() = ?L_lan,k Whyn — tr [(In _;LWH) 1 Hn,kWn}
o Let /

hn (6) = 3In;—;(9) = h1n(8), hi.n (), 0, e 0

FOC of other parameters
then the LM statistic is

LM, = —h, (6) (a?g;gne(,é) ) h (8)



Test 2: Heterogeneity among Spatial Correlation
Asymptotic Distribution: Sketch of Proof

@ Similar to LM1, we need to prove the asymptotic Normality of the
linear combinations of scores:

_ 1, _
&0 (2,8) = S50, HanWayn — tr [(/n AW, Hay,,W,,}

@ The first term is similar to discussion for LM1, with slightly
complicated discussions
o With regularity assumptions on W,

Lotr (= 2Wo) " Ha oW | = 0 (1)



Test 2: Heterogeneity among Spatial Correlation

@ Asymptotic Distribution: Sketch of Proof
e With the same assumption, the degree of freedom of LM2 is (K —1)

since:
K B K 1, _ 1
Y hin(8)= %, {azaan,kWnyn— tr| (ln—AW,) Hn,kvvn}}
k=1 k=1
- %B/,,Wnyn —tr| (= AW0) " W,
=0

o Thus, we have LM2 % 72 (K —1)



Monte Carlo Simulations
Basic Settings

@ Spatial weighting matrix is constructed by the following way:

© Generate two random vectors of coordinates as the geographic
location for each observation;

@ Find / nearest neighbors for each observation according to their spatial
distances and denote the corresponding wj; = 1, otherwise wj; = 0;

© Row-normalize W,,.

@ 1000 times replications for each round

. jid
o External regressor: x; intercept, xp ~ N(0,1)



Monte Carlo Simulations
Performance of LM1: Test Size

@ In simulations for LM1, we have two groups with 4:1 ratio of

individuals
Table 1: Test Size of LM; (x2.¢5 (2) = 5.9915)
n  neighbors residuals (5',02) =[(1,1).4] (.61,02) =[(2,-5),1]
N (0,07) 0.068 0.071
=5 o[[(2.25,2)—45] 0.072 0.073
100 oU [—v/3,V/3] 0.067 0.061
N (0,07) 0.078 0.077
=10 o[['(2.25,2)—4.5] 0.057 0.071
oU [—v/3,V3] 0.073 0.066
N (0,67) 0.055 0.067
=5 o[[(2.252)—45] 0.074 0.054
200 olU [—V/3,V/3] 0.057 0.058
N (0,07) 0.058 0.064
1=10 o[I'(2.25,2) —4.5] 0.054 0.059
oU [—V/3,V3] 0.067 0.054
N (0,07) 0.048 0.049
=5 o[['(2.25,2) —45] 0.050 0.048
400 oU [—V/3,V3] 0.056 0.048
N (0,07) 0.052 0.054
=10 o[I'(2.25,2)—4.5] 0.053 0.062
oU [—v/3,V3] 0.051 0.057




Monte Carlo Simulations

Performance of LM1: Test Power
@ Compare to small power of Moran's | in some situations, the test
power of LM1 is far better and converge to 1 as sample size increases
(A2, 8,0%) =[0,04,(2,-5),1]

n  neighbors residuals
Moran’s I Statistic LM1 Statistic
N (0,07) 0.055 0.933
=5 o[I'(2.25,2) —4.5] 0.091 0.437
100 ) 0085 0765
N . .
=10 o [I'(2.25,2) —4.5] 0.083 0.395
oU [7(\/3’2{3] 0.059 0.997
N (0,0 0.177 1
=5 o [I'(2.25,2) —4.5] 0.148 0.776
200 o 0132 !
N .
=10 o [I'(2.25,2) —4.5] 0.102 0.547
L S
, O .
=5 o [I'(2.25,2) — 4.5] 0.189 0.985
400 e 0193 .
, O E
=10 o[I'(2.25,2) —4.5] 0.146 0.726
oU [—V/3,V3] 0.143 1




Monte Carlo Simulations
Performance of LM2: Test Size

@ In simulations for LM2, we have three groups with 3:5:2 ratio of

individuals

Table 5: Test Size of LMy (x3 o5 (2) = 5.9915)

S -
n  neighbors residuals AB .o ) (A’ Bo )
=[05(1,1),4 =[-04,(2,-5),1]
N (0,5%) 0.078 0.077
=5 o[[(225,2) —45] 0.112 0.054
100 oU [7\/3,1\/37 0.067 0.080
N (0,57 0.097 0.069
1=10 o[l'(2.25,2) —4.5] 0.093 0.058
oU [-v3,V3] 0.070 0.071
N (0,5%) 0.062 0.065
I=5 o[['(2252) —45] 0.095 0.067
200 oU [7\/5,1\/@ 0.600 0.057
N (0,07) 0.067 0.058
=10 o[['(2.25,2) 45| 0.085 0.057
o) o7
, 0 N X
=5 o[[(225,2)—4.5| 0.082 0.050
400 oU [—\/3,1\/5} 0.056 0.049
N (0,07) 0.059 0.054
=10 o[['(2.25,2) - 45| 0.077 0.049
oU [-v/3,V3] 0.048 0.048




Monte Carlo Simulations

Performance of LM2: Test Power

Table 6: Test Power of LMa2 (x3 g5 (2) = 5.9915)

2 ' 52
n  neighbors residuals A e, X, B, 0 Mo da, B0
=[0.5,-0.2,0.7,(1,1),4] =10,0.4,0.1,(2,-5),1]
N(0,0%) 0.790 0.921
I=5  o[l(2252) - 45| 0.496 0.218
100 aU [-/3,V3] 0.827 0.862
N(0,0%) 0.834 0.673
1=10 o[[(2.25,2) - 4.5] 0.315 0.186
oU [-/3, V3] 0.603 0.882
N(0,0%) 0.971 0.989
I=5  o[l(2252) - 45| 0.775 0.453
200 oU [-V/3,/3] 0.982 0.997
N(0,%) 0.946 0.931
1=10 o[[(2.25,2) - 4.5] 0.531 0.343
oU [-V/3, V3] 0.967 0.984
N(0,0%) 1 1
1=5  o[l(2252) - 45| 0.963 0.715
400 oU [-V/3, V3] 1 1
N(0,0%) 0.999 0.998
1=10 o[[(2.25,2) - 4.5] 0.811 0.580

1

1




Application: City Size and Housing Market

Short-run Effect of Size Heterogeneity

e Data: annual housing price index change rate from 2006 to 2014, 240
counties in Northeastern US

o Cross-sectional regression for each year (reduce long-run reverse
effect)

o Large city areas: By using Census 2010 population size, the largest 10
MSAs with more than 1 million residents and their encompassing CSA
counties are classified as large city areas

@ The spatial weighting matrix we use is the row-normalized county
adjacent matrix



Application: City Size and Housing Market

Alternative Model Specifications

@ Linear Regression:
AHPI%j + = Bo + B1Areal GDP; + + o Large; + State; + &;
@ SAR model:

AHPI%; s = Bo+p Y wiAHPI%j : + By Large; + B> Areal GDP; ;

j=1

n
+ B3 ) wjjArealGDP; . 4 State; + €
j=1

© HSAR model:
n n
AHPI%; = prLarge; Y wiiAHPI%; ¢+ ps (1 — Large;) Y wyAHPI%; ¢
Jj=1 j=1
n
+ Bo + Bi1Large; + PoAreal GDP; + + B3 Z wijArealGDP;
j=1

+ State; + &;



Application: City Size and Housing Market

Pre-estimation Test Results

@ Moran's [ and LM1 indicates a strong spatial correlation among the

AHPI; ; despite 2013

@ LM?2 indicates a time-varying heterogeneity of the spatial correlations,
which is stronger in 2006, 2007 and 2014 when large city areas have

positive annual housing price growth on average

Table 12: Test Results of Moran’s I, LM1 and LM2

2006 2007 2008 2009 2010 2011 2012 2013
Moran Statistic | 8.39 2.06 6.09 7.99 574 7.86 10.07 1.37 2.08
p-value 0 .04 .00 00 .00 .00 .00 .17 .04
LM1 Statistic | 87.83 9.56 41.75 65.92 29.13 69.44 119.912.60 6.70
p-value 0 01 .00 00 .00 .00 .00 .27 .04
LM2 Statistic | 8.07 3.Y3 2056 .62 .10 261 114 133 4.72
p-value 00 05 15 43 75 11 29 .25 .03




Application: City Size and Housing Market

Results from HSAR Specification

Table 15: Results of Model 3 (HSAR)
2006 2007 2008 2009 2010 2011 2012 2013 2014

BTHHE Rl 5O*** HO*** Rh B4FFE - R3RAE 21 33**
PL | (08) (12) (09)  (08)  (11)  (10)  (10) (15)  (.14)
) .05 R 41Fx* J1HxE BE¥FE - 66*FE 02 -.08
Ps | (10) (12) (09)  (08)  (10)  (09)  (08) (13) (.12
3 5.50%%% 2 08*** .60 SLTTRE S L2.23%kx U] 15%* -.43 -.80 -1.3%*
0| (1.09)  (.67) (56)  (69)  (66)  (53)  (47) (.50)  (.63)
3 -3.35%¥* L Tokkk ] Q1Fk* -.50 .73 - T1* .22 b56* 1.92%F*
L (99) (.53) (38)  (57)  (50)  (40)  (32) (32) (.50
3 10*** -.01 -.03 .02 O7** 14%%* .01 .05 -.02
2| (04) (.04) (04)  (04)  (03)  (04)  (03) (04) (.04)
11 .05 .13 .13 L19*** .16* .00 .02 .06
B3
(.09) (.08) (09)  (08)  (07)  (09)  (07) (07)  (.07)
R? .84 .59 .61 .82 .75 .67 .53 17 44




Application: City Size and Housing Market

Major Results from HSAR Specification

@ Time Varying Heterogeneity of City Size:

Q@ pi: from significantly negative to significantly positive from 2006 to
2014

Q p. — ps: large cities received more spill-over effects when their
housing market is growing in 2006, 2007 and 2014, but the difference
disappear during recession

@ Post-estimation t—statistics are consistent with pre-estimation LM?2
test statistics:

Table 16: Post Estimation t-test for Hy : py, = ps
2006 2007 2008 2009 2010 2011 2012 2013 2014
Statistic | 2.81 193 142 .78 30 -160 -1.05 114 213
p-value | 01 .05 16 44 .76 .11 29 25 .03

t-statistic




Application: City Size and Housing Market

Why city size matters?

@ Credit Cycle and Uneven Income Distribution Across Regions

@ Mian and Sufi (2009,2015), Adelino, Schoar and Severino (2015):
Low income buyers contributes increasing share of delinquencies from
2003 to 2008, including lower-half of middle class

@ Baum-Snow and Pavan (2013): Inequality among wages is strong
positively correlated with city size

© JCHS of Harvard University: higher housing price to income ratio in
large cities

@ The housing market in large cities are more sensitive to credit cycles
due to more lower income borrowers and higher leverage rate



Application: City Size and Housing Market

Financial Crisis & Geographical Income Inequality

o Higher degree of Inequality:

© Credit Expansion: Housing Demand{==-Housing Price? = Leverage
Rate? (Systematic Risk?)

@ Credit Crunch: Delinquency?t= Housing Demand | & Supply 1=
Housing Pricel

@ The result provides indirect evidence for Kumhof, Ranciere and
Winant (2015), that financial crisis can be caused by dynamic of
income distribution, with considering the variations across space.



