LM Tests for Heterogeneous Spatial Correlations with Application in Housing Market

Yang Yang

Department of Economics, The Ohio State University

April 28, 2021

Introduction

Motivation

- Heterogeneity: individuals (or regions)

 social network (or spillovers)
- Gender difference in friendships : different interaction with classmates at school ⇒ heterogeneous peer effect on education outcome
- ② Different city size: different level of externality received from neighborhood areas to local housing market
 - Traditional Moran's I test is derived under homogeneous spatial correlations, which is not suitable for heterogeneous cases
 - Single test is not enough for both existence and heterogeneity

Introduction

Empirical Interests

- Matvos and Ostrivsky (2010): Mutual funds with some particular types tend to oppose other funds in corporate director elections
- Yakusheva, Kapinos and Eisenberg (2014): Females are subject to peer influence in weight gain, with little evidence of peer effects for males in a natural experiment design for college student roommate assignment
- Patacchini, Rainone and Zenou (2017): Peer effects on educational outcomes depend on the length of friendship

Introduction

Theoretical Literatures

- Moran (1950), Cliff and Ord (1973): derive the Moran's I test statistic
- Kelejian and Prucha (2001): derive the asymptotic property of Moran's I statistic for spatial autoregressive model (SAR)
- Aquaro, Bailey and Pesaran (2020): spatial panel model with individual level heterogeneous coefficients

Heterogenous Coefficient Spatial Autoregressive Model Basic Settings

- n individual spatial units in the economy located in a region $D_n \subset \mathbb{R}^d$, where $|D_n| = n$
- ullet distance among individuals satisfy $d_{ij} \geq 1$ for any $i \neq j$
- K groups of individuals: K sub-regions $\left\{D_n^k\right\}_{k=1}^K$ inside D_n where K is constant and does not depend on n
- neighborhood relationship may not depend on D_n^k , for example, male and female students can be assigned into the same class

Heterogenous Coefficient Spatial Autoregressive Model Model Formation and Interpretation

DGP of HSAR model:

$$y_{i} = \sum_{k=1}^{K} \lambda_{k} h_{i,k} \left(\sum_{j=1}^{n} w_{ij} y_{j} \right) + x_{i}' \beta + u_{i}$$

- $h_{i,k} = \begin{cases} 1 & i \in D_n^k \\ 0 & i \notin D_n^k \end{cases}$ and $u_i \stackrel{iid}{\sim} (0, \sigma^2)$
- w_{ij} : spatial weights, $w_{ij} \ge 0$ and $w_{ii} = 0$
- ullet λ_k : neighborhood effect received by individual $i\in D_n^k$
- β : effects from other regressors

Heterogenous Coefficient Spatial Autoregressive Model Model Formation and Interpretation

• Matrix Form:

$$y_n = \sum_{k=1}^K \lambda_k H_{n,k} W_n y_n + X_n \beta + u_n$$

- $W_n = (w_{ij})_{n \times n}$: spatial weighting matrix
- $H_{n,k} = diag(d_{1,k}, \dots, d_{n,k})$: diagonalized matrix of group dummy vectors, $\sum_{k=1}^{K} H_{n,k} = I_n$
- Without group heterogeneity, the model reduced to a standard SAR model: $y_n = \lambda W_n y_n + X_n \beta + u_n$

Heterogenous Coefficient Spatial Autoregressive Model

Economic Foundation

 Similar to SAR model, the HSAR can be regarded as a Nash equilibrium of a static complete information game with the following individual utility function:

$$u_{i}(y_{i}) = y_{i}\left(\lambda_{k} \sum_{j=1}^{n} w_{ij}y_{j} + x_{i}\beta + v_{i}\right) - \frac{y_{i}^{2}}{2}$$

• It can also be interpreted as a social interaction setting:

$$u_{i}(y_{i}) = \underbrace{y_{i}(x_{i}\beta + v_{i})}_{private \ utility} - \frac{1}{2} \left(y_{i} - \lambda_{k} \sum_{j=1}^{n} w_{ij} y_{j}\right)^{2}$$

$$conformity \ effect \ with \ friends$$

Heterogenous Coefficient Spatial Autoregressive Model

• With assuming $u_n \sim N(0, \sigma^2 I_n)$, the log-likelihood function is:

$$\ln L_n\left(\Lambda',\beta,\sigma^2\right) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\sigma^2 + \ln|S_n(\Lambda)|$$
$$-\frac{1}{2\sigma^2}(S_n(\Lambda)y_n - X_n\beta)'(S_n(\Lambda)y_n - X_n\beta)$$

- $\Lambda = (\lambda_1, \dots, \lambda_k)'$ and $S_n(\Lambda) = I_n \sum_{k=1}^K \lambda_k H_{n,k} W_n$
- To make sure $S_n(\Lambda)$ is invertible, a sufficient condition is $\max_k |\lambda_k| < \frac{1}{\|W_n\|_{\infty}}$
- Computationally cumbersome to maximize when sample size is large due to $\ln |S_n(\Lambda)|$ term

Test Statistic

- $H_0: \lambda_k = 0$ for $\forall k = 1, \dots, K$ vs. $H_1: \exists k, \ \lambda_k \neq 0$
- ullet Given MLE for linear regression model $\hat{ heta}=\left(0,\hat{eta}',\hat{\sigma}^2
 ight)'$, we can obtain the FOC of constrained estimator:

$$g_{k,n}\left(\hat{\theta}\right) = \frac{\partial \ln L_n\left(\hat{\theta}\right)}{\partial \lambda_k} = \frac{1}{\hat{\sigma}^2} \left(y_n - X_n \hat{\beta}\right)' H_{n,k} W_n y_n = \frac{1}{\hat{\sigma}^2} \hat{u}' H_{n,k} W_n y_n$$

$$ullet$$
 Let $g_n\left(\hat{ heta}
ight)=rac{\partial \ln L_n\left(\hat{ heta}
ight)}{\partial heta}=$

$$\left(g_{1,n}\left(\hat{\theta}\right),\cdots,g_{K,n}\left(\hat{\theta}\right),\underbrace{0,\cdots,0}_{FOC\ of\ other\ parameters}\right)',\ \text{then the LM test}$$

statistic is:

$$LM_{1} = -g_{n}\left(\hat{\theta}\right)' \left(\frac{\partial^{2} \ln L_{n}\left(\hat{\theta}\right)}{\partial \theta \partial \theta'}\right)^{-1} g_{n}\left(\hat{\theta}\right)$$

Asymptotic Distribution: Sketch of Proof

- Jointly asymptotic Normal ←⇒ asymptotic Normal for any linear combinations
- Let $a = (a_1, \dots, a_K)'$ be an arbitrary vector of real numbers, we want to discuss:

$$f_n\left(a,\hat{\theta}\right) = \sum_{k=1}^K a_k g_n\left(\hat{\theta}\right) = \frac{1}{\hat{\sigma}^2} \hat{u}'_n H_{a,n} W_n y_n$$

• With proper assumptions similar in Jenish and Prucha (2001) and Lee (2004), we have the following form:

$$\frac{1}{\sqrt{n}}f_{n}\left(a,\hat{\theta}\right) = \frac{1}{\hat{\sigma}^{2}\sqrt{n}}\left(A_{n}^{'}u_{n} + u_{n}^{'}B_{n}u_{n}\right) + o_{p}\left(1\right)$$

• $H_{a,n}$, A_n and B_n are $n \times n$ matrices

Asymptotic Distribution: Sketch of Proof

- Two scenarios with different spatial weighting matrix:
- **1** $\frac{1}{\sqrt{n}}A_n'u_n$ dominates $\frac{1}{\sqrt{n}}u_n'B_nu_n$: apply Lyapunov CLT
- 2 $\frac{1}{\sqrt{n}}A'_nu_n$ does not dominate: apply CLT for linear quadratic form in Jenish and Prucha (2001)
- \Longrightarrow Asymptotic Normality of $rac{1}{\sqrt{n}}f_{n}\left(a,\hat{ heta}
 ight)$
- \Longrightarrow Jointly asymptotic Normality of $\frac{1}{\sqrt{n}}g_{k,n}\left(\hat{ heta}\right)$'s

Asymptotic Distribution: Sketch of Proof

- The asymptotic covariance matrix follows likelihood equality: $E_{\theta}\left(\frac{\partial^2 \ln L_n(\theta)}{\partial \theta \partial \theta'}\right) + E_{\theta}\left(\frac{\partial \ln L_n(\theta)}{\partial \theta}\frac{\partial \ln L_n(\theta)}{\partial \theta'}\right) = 0$
- ullet Degree of freedom is K with the following regularity assumption:
- For $\forall k=1,\cdots,K$, we have $\lim_{n\to\infty}\frac{|D_n^k|}{n}=c_k$ where c_k is a non-zero positive constant and $\sum_{k=1}^K c_k=1$, i.e. there exist a stationary distribution of types as $n\to\infty$ and the probability of each type would not shrink to zero.
- Empirically, as long as you have large enough observations for each type, there is no problem
- Thus, we have $LM_1 \stackrel{d}{\to} \chi^2(K)$

Test 2: Heterogeneity among Spatial Correlation Test Statistic

- $H_0: \rho_1 = \cdots = \rho_K$ vs. $H_1: \rho_i \neq \rho_j, \exists i \neq j$
- Given QMLE of SAR model $\bar{\theta} = \left(\bar{\Lambda}', \bar{\beta}', \bar{\sigma}^2\right)'$, we can obtain the FOC of constrained estimator:

$$h_{k,n}\left(\bar{\theta}\right) = \frac{\partial \ln L_n\left(\bar{\theta}\right)}{\partial \lambda_k} = \frac{1}{\bar{\sigma}^2} \bar{u}_n' H_{n,k} W_n y_n - tr\left[\left(I_n - \bar{\lambda} W_n\right)^{-1} H_{n,k} W_n\right]$$

Let

$$h_n\left(\bar{\theta}\right) = \frac{\partial \ln L_n\left(\bar{\theta}\right)}{\partial \theta} = \left(h_{1,n}\left(\bar{\theta}\right), \cdots, h_{K,n}\left(\bar{\theta}\right), \underbrace{0, \cdots, 0}_{FOC \ of \ other \ parameters}\right)',$$
 then the LM statistic is

$$LM_{2} = -h_{n}\left(\bar{\theta}\right)' \left(\frac{\partial^{2} \ln L_{n}\left(\bar{\theta}\right)}{\partial \theta \partial \theta'}\right)^{-1} h_{n}\left(\bar{\theta}\right)$$

Test 2: Heterogeneity among Spatial Correlation

Asymptotic Distribution: Sketch of Proof

• Similar to *LM*1, we need to prove the asymptotic Normality of the linear combinations of scores:

$$\xi_{n}\left(a,\bar{\theta}\right)=\frac{1}{\bar{\sigma}^{2}}\bar{u}_{n}^{'}H_{a,n}W_{n}y_{n}-tr\left[\left(I_{n}-\bar{\lambda}\,W_{n}\right)^{-1}H_{a,n}W_{n}\right]$$

- The first term is similar to discussion for LM1, with slightly complicated discussions
- With regularity assumptions on W_n , $\frac{1}{\sqrt{n}} tr \left[\left(I_n \overline{\lambda} W_n \right)^{-1} H_{a,n} W_n \right] = o_p(1)$

Test 2: Heterogeneity among Spatial Correlation

- Asymptotic Distribution: Sketch of Proof
- With the same assumption, the degree of freedom of LM2 is (K-1) since:

$$\begin{split} \sum_{k=1}^{K} h_{k,n} \left(\bar{\theta} \right) &= \sum_{k=1}^{K} \left\{ \frac{1}{\bar{\sigma}^{2}} \bar{u}_{n}' H_{n,k} W_{n} y_{n} - tr \left[\left(I_{n} - \bar{\lambda} W_{n} \right)^{-1} H_{n,k} W_{n} \right] \right\} \\ &= \frac{1}{\bar{\sigma}^{2}} \bar{u}_{n}' W_{n} y_{n} - tr \left[\left(I_{n} - \bar{\lambda} W_{n} \right)^{-1} W_{n} \right] \\ &= 0 \end{split}$$

• Thus, we have $LM2 \xrightarrow{d} \chi^2(K-1)$

Basic Settings

- Spatial weighting matrix is constructed by the following way:
- Generate two random vectors of coordinates as the geographic location for each observation;
- ② Find I nearest neighbors for each observation according to their spatial distances and denote the corresponding $w_{ii} = 1$, otherwise $w_{ii} = 0$;
- 3 Row-normalize W_n .
- 1000 times replications for each round
- External regressor: x_1 intercept, $x_2 \stackrel{iid}{\sim} N(0,1)$

Performance of LM1: Test Size

• In simulations for *LM*1, we have two groups with 4:1 ratio of individuals

	Table 1: Test Size of LM_1 ($\chi^2_{0.95}(2) = 5.9915$)									
n	${\it neighbors}$	residuals	$(\beta', \sigma^2) = [(1, 1), 4]$	$(\beta', \sigma^2) = [(2, -5), 1]$						
		$N\left(0,\sigma^2\right)$	0.068	0.071						
	l = 5	$\sigma \left[\Gamma \left(2.25, 2 \right) - 4.5 \right]$	0.072	0.073						
100		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.067	0.061						
100		$N\left(0,\sigma^{2}\right)$	0.078	0.077						
	l = 10	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.057	0.071						
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.073	0.066						
		$N\left(0,\sigma^{2}\right)$	0.055	0.067						
	l = 5	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.074	0.054						
200		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.057	0.058						
200		$N\left(0,\sigma^2\right)$	0.058	0.064						
	l = 10	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.054	0.059						
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.067	0.054						
		$N\left(0,\sigma^2\right)$	0.048	0.049						
	l = 5	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.050	0.048						
400		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.056	0.048						
400		$N(0, \sigma^2)$	0.052	0.054						
	l = 10	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.053	0.062						
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.051	0.057						

Performance of LM1: Test Power

• Compare to small power of Moran's I in some situations, the test power of LM1 is far better and converge to 1 as sample size increases

n	neighbors	residuals	$\left(\lambda_1,\lambda_2,eta^{'},\sigma^2 ight)=\left[0,0.4,\left(2,-5 ight),1 ight]$				
			Moran's I Statistic	LM1 Statistic			
		$N\left(0,\sigma^2 ight)$	0.055	0.933			
	l = 5	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.091	0.437			
100		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.103	0.996			
100		$N\left(0,\sigma^2\right)$	0.085	0.763			
	l = 10	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.083	0.395			
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.059	0.997			
		$N\left(0,\sigma^2 ight)$	0.177	1			
	l = 5	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.148	0.776			
200		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.213	1			
	l = 10	$N\left(0,\sigma^{2} ight)$	0.132	1			
		$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.102	0.547			
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.111	1			
		$N\left(0,\sigma^{2} ight)$	0.176	1			
	l = 5	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.189	0.985			
400		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.237	1			
400		$N\left(0,\sigma^{2} ight)$	0.193	1			
	l = 10	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.146	0.726			
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.143	1			

Performance of LM2: Test Size

• In simulations for *LM*2, we have three groups with 3:5:2 ratio of individuals

	Table 5: Test Size of LM_2 ($\chi^2_{0.95}(2) = 5.9915$)									
n	neighbors	residuals	$\left(\lambda,eta^{'},\sigma^{2} ight)$	$\left(\lambda,eta^{'},\sigma^{2} ight)$						
			= [0.5, (1, 1), 4]	= [-0.4, (2, -5), 1]						
		$N\left(0,\sigma^2\right)$	0.078	0.077						
	l = 5	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.112	0.054						
100		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.067	0.080						
100		$N(0, \sigma^2)$	0.097	0.069						
	l = 10	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.093	0.058						
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.070	0.071						
	l = 5	$N\left(0,\sigma^2\right)$	0.062	0.065						
		$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.095	0.067						
200 -		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.600	0.057						
200	l = 10	$N(0, \sigma^2)$	0.067	0.058						
		$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.085	0.057						
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.045	0.059						
		$N\left(0,\sigma^2\right)$	0.054	0.047						
	l = 5	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.082	0.050						
400		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.056	0.049						
400		$N(0, \sigma^2)$	0.059	0.054						
	l = 10	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.077	0.049						
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.048	0.048						

Performance of LM2: Test Power

Table 6: Test Power of LM_2 $(\chi^2_{0.95}(2) = 5.9915)$									
n	neighbors	residuals	$\left(\lambda_{1},\lambda_{2},\lambda_{3},eta^{'},\sigma^{2} ight)$	$\left(\lambda_{1},\lambda_{2},\lambda_{3},eta^{'},\sigma^{2} ight)$					
11	neignbors	residuais	=[0.5, -0.2, 0.7, (1, 1), 4]	= [0, 0.4, 0.1, (2, -5), 1]					
		$N\left(0,\sigma^2\right)$	0.790	0.921					
	l = 5	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.496	0.218					
100		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.827	0.862					
100		$N\left(0,\sigma^2\right)$	0.834	0.673					
	l = 10	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.315	0.186					
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.603	0.882					
		$N\left(0,\sigma^2\right)$	0.971	0.989					
	l = 5	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.775	0.453					
200		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.982	0.997					
200		$N(0, \sigma^2)$	0.946	0.931					
	l = 10	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.531	0.343					
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	0.967	0.984					
		$N\left(0,\sigma^2\right)$	1	1					
	l = 5	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.963	0.715					
400		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	1	1					
400		$N\left(0,\sigma^2\right)$	0.999	0.998					
	l = 10	$\sigma \left[\Gamma \left(2.25,2\right) -4.5\right]$	0.811	0.580					
		$\sigma U\left[-\sqrt{3},\sqrt{3}\right]$	1	1					

Short-run Effect of Size Heterogeneity

- Data: annual housing price index change rate from 2006 to 2014, 240 counties in Northeastern US
- Cross-sectional regression for each year (reduce long-run reverse effect)
- Large city areas: By using Census 2010 population size, the largest 10 MSAs with more than 1 million residents and their encompassing CSA counties are classified as large city areas
- The spatial weighting matrix we use is the row-normalized county adjacent matrix

Alternative Model Specifications

Linear Regression:

$$\Delta HPI\%_{i,t} = \beta_0 + \beta_1 \Delta realGDP_{i,t} + \beta_2 Large_i + State_i + \varepsilon_i$$

SAR model:

$$\Delta HPI\%_{i,t} = eta_0 +
ho \sum_{j=1}^n w_{ij} \Delta HPI\%_{j,t} + eta_1 Large_i + eta_2 \Delta realGDP_{i,t} \ + eta_3 \sum_{j=1}^n w_{ij} \Delta realGDP_{j,t} + State_i + arepsilon_i$$

HSAR model:

$$\Delta HPI\%_{i,t} = \rho_L Large_i \sum_{j=1}^{n} w_{ij} \Delta HPI\%_{j,t} + \rho_S (1 - Large_i) \sum_{j=1}^{n} w_{ij} \Delta HPI\%_{j,t}$$

$$+ \beta_0 + \beta_1 Large_i + \beta_2 \Delta realGDP_{i,t} + \beta_3 \sum_{j=1}^{n} w_{ij} \Delta realGDP_{j,t}$$

$$+ State_i + \varepsilon_i$$

Pre-estimation Test Results

- Moran's I and LM1 indicates a strong spatial correlation among the $\Delta HPI_{i,t}$ despite 2013
- LM2 indicates a time-varying heterogeneity of the spatial correlations, which is stronger in 2006, 2007 and 2014 when large city areas have positive annual housing price growth on average

Table 12: Test Results of Moran's I , $LM1$ and $LM2$										
		2006	2007	2008	2009	2010	2011	2012	2013	2014
Moran -	Statistic	8.39	2.06	6.09	7.99	5.74	7.86	10.07	1.37	2.08
Moran –	p-value	.00	.04	.00	.00	.00	.00	.00	.17	.04
LM1 –	Statistic	87.83	9.56	41.75	65.92	29.13	69.44	119.91	2.60	6.70
LIVI 1 -	p-value	.00	.01	.00	.00	.00	.00	.00	.27	.04
LM2 –	Statistic	8.07	3.73	2.05	.62	.10	2.61	1.14	1.33	4.72
LIVI Z	p-value	.00	.05	.15	.43	.75	.11	.29	.25	.03

Results from HSAR Specification

Table 15: Results of Model 3 (HSAR)									
	2006	2007	2008	2009	2010	2011	2012	2013	2014
	.67***	.36***	.50***	.50***	.35***	.34***	.53***	.21	.33**
$ ho_L$	(.08)	(.12)	(.09)	(.08)	(.11)	(.10)	(.10)	(.15)	(.14)
	.31***	.05	.33***	.41***	.31***	.55***	.66***	02	08
$ ho_S$	(.10)	(.12)	(.09)	(.08)	(.10)	(.09)	(.08)	(.13)	(.12)
	5.50***	2.08***	.60	-1.77**	-2.23***	-1.15**	43	80	-1.3**
eta_0	(1.09)	(.67)	(.56)	(.69)	(.66)	(.53)	(.47)	(.50)	(.63)
	-3.35***	-2.72***	-1.01***	50	.73	71*	.22	.56*	1.92***
eta_1	(.99)	(.53)	(.38)	(.57)	(.50)	(.40)	(.32)	(.32)	(.50)
	.10***	01	03	.02	.07**	.14***	.01	.05	02
β_2	(.04)	(.04)	(.04)	(.04)	(.03)	(.04)	(.03)	(.04)	(.04)
β_3	.11	.05	.13	.13	.19***	.16*	.00	.02	.06
ρ_3	(.09)	(.08)	(.09)	(.08)	(.07)	(.09)	(.07)	(.07)	(.07)
R^2	.84	.59	.61	.82	.75	.67	.53	.17	.44

Major Results from HSAR Specification

- Time Varying Heterogeneity of City Size:
- $oldsymbol{9}_1$: from significantly negative to significantly positive from 2006 to 2014
- ② $\rho_L \rho_S$: large cities received more spill-over effects when their housing market is growing in 2006, 2007 and 2014, but the difference disappear during recession
- Post-estimation t—statistics are consistent with pre-estimation LM2 test statistics:

Table 16: Post Estimation t-test for $H_0: \rho_L = \rho_S$										
			2007							
t-statistic	Statistic	2.81	1.93	1.42	.78	.30	-1.60	-1.05	1.14	2.13
	p-value	.01	.05	.16	.44	.76	.11	.29	.25	.03

Application: City Size and Housing Market Why city size matters?

- Credit Cycle and Uneven Income Distribution Across Regions
- Mian and Sufi (2009,2015), Adelino, Schoar and Severino (2015): Low income buyers contributes increasing share of delinquencies from 2003 to 2008, including lower-half of middle class
- Baum-Snow and Pavan (2013): Inequality among wages is strong positively correlated with city size
- JCHS of Harvard University: higher housing price to income ratio in large cities
- The housing market in large cities are more sensitive to credit cycles due to more lower income borrowers and higher leverage rate

Financial Crisis & Geographical Income Inequality

- Higher degree of Inequality:
- Credit Expansion: Housing Demand $\uparrow \Longrightarrow$ Housing Price $\uparrow \Rightarrow$ Leverage Rate \uparrow (Systematic Risk \uparrow)
- ② Credit Crunch: Delinquency $\uparrow \Rightarrow$ Housing Demand $\downarrow \&$ Supply $\uparrow \Rightarrow$ Housing Price \downarrow
 - The result provides indirect evidence for Kumhof, Ranciere and Winant (2015), that financial crisis can be caused by dynamic of income distribution, with considering the variations across space.