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Abstract

This paper considers social interaction models with group fixed effects and observed het-
erogeneity among agents. By likelihood approach, with the control of group-level confounding
effects of the common variables, both heterogeneous endogenous peer effects and exogenous
contextual effects can be identified and estimated consistently. Under some regularity assump-
tions, we prove the consistency and asymptotic normality of the QMLE. Monte Carlo simulation
results show that our QMLE has good finite sample performance. For an application, we in-
vestigate the China Education Panel Survey (CEPS) and focus on gender heterogeneity on
academic achievement of Grade 8 students in junior high school. We capture significant gender
disparities in peer effects from gender subgroups in a classroom. Besides, female students’ test
scores are more subject to both female and male peers’ average achievement.

1 Introduction

Social interaction effects have received substantial attention since Coleman et al. (1966). Peer ef-
fects, as a typical example, have inherent externality (Hoxby, 2000), which provides justifications for
policy intervention targeted at enhancing social welfare. However, the identification and estimation
of social interaction effects is hard. Linear-in-means models might suffer from “reflection problem”
described by Manski (1993)1, omitted variable bias problem (or correlated effects in Manski (1993))
2, and data limitation about an individual’s reference group.

The spatial autoregressive (SAR) model with both endogenous peer effects and exogenous con-
textual effects combined with group fixed effects can confront the difficulties mentioned above, since
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comments.
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1It refers to the impossibility of separately identifying two distinct types of social effects - endogenous or behavioral
effects and contextual or exogenous effects. The former one can generate a social multiplier while the latter one do
not.

2It’s difficult to disentangle social effects from other confounding effects. Peer group formation might not be
random. The validity of strategies such as instrumental variable (IV) method, family fixed effect and experiment
type strategy is open to question (Lin, 2010).
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the nonlinearity introduced by variations in the measurements of the peer variables provides help-
ful information for identification. For instance, Lee (2007) incorporate endogenous and contextual
effects and group fixed effects into a SAR model and consider a group interaction setting, which
assumes that an individual is equally affected by all the other members in the same group. The
proposed conditional maximum likelihood (CML) and IV methods rely on sufficient variations in
group sizes for identification. Lin (2010) instead specify the spatial weight matrix based on the
actual friendship network within each group and employ the “de-group-mean” approach for esti-
mation. These two papers provide valuable framework for social interaction models, but they only
consider homogeneous agents. Besides, one limitation of their studies is that they can only deal
with interaction structure within a group, but not the case when an individual also interact with
other individuals outside the group.

A more realistic social interaction scenario is that individuals’ with disparate types, such as
gender, races and education background, have different interaction patterns with other members,
either from the same group or from different groups. Heterogeneous social interaction effects are
investigated in some previous works (e.g., Yakusheva et al. (2014), Lu and Anderson (2015),
Tincani (2018)), however, most of them consider experiment type or quasi - experimental strategy,
as pointed out by Lin (2010), the validity of which depends heavily on the design and implementation
of the experiment since it’s possible that what’s supposed to be random is actually a result of self-
selection. The higher-order SAR (HSAR) models might provide a solution. Hsieh and Lin (2017)
apply a HSAR model to study heterogeneous peer effects with endogenous network formation by
using Bayesian approach for estimation. Gupta and Robinson (2018) develops pseudo maximum
likelihood estimates for HSAR models with increasingly many parameters without considering fixed
effects. Aquaro et al. (2020) considers estimation and inference of a spatiotemporal model with
spatial lag coefficients being differed over the cross-section units.

This study further extend the HSAR model to incorporate both heterogeneous endogenous
peer effects and exogenous contextual effects as well as group fixed effects in a social interaction
setting. First, unlike the Bayesian approach in Hsieh and Lin (2017), we propose a quasi-maximum
likelihood (QML) approach for identification and estimation. As will be discussed in Section 2.3,
the approaches in Lee (2007) and Lin (2010) can not be applied to handle the group fixed effects
in the presence of heterogeneity among agents. Instead, similar to Yu et al. (2008)3, we consider
a direct estimation approach by the joint estimation of the model parameters and the group-fixed
effects. Since there exists asymptotic bias as the expectation of the first order derivatives evaluated
at the true parameter values are not centered at zero, a bias correction procedure can be employed
subsequently to greatly reduce the bias, which can be verified by the Monte Carlo simulation results.
Second, the QML estimation can accommodate two commonly seen sampling methods in empirical
applications: (i) more group members are included in the sample as the sample size increases,
keeping the group number fixed; (ii) more groups enter the sample as the sample size increases,
while keeping group members unaltered. We can obtain consistency and asymptotic normality for
the estimates of the parameters of interest in both cases. For the first case, the limiting distribution

3They propose estimation methods for spatial dynamic panel data (SDPD) models with both time and individual
fixed effects.
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of each group fixed effect can be derived, while the limiting distribution doesn’t exist for the second
case. Third, our model also allow a more general scenario that an individual might interact with
other individuals outside her/his group, which can not be handled by previous approaches.

We then apply our model to investigate China Education Panel Survey (CEPS) and focus on
gender heterogeneity on academic achievement of Grade 8 students in junior high school. First,
significant gender disparities in peer effects from gender subgroups in a classroom are captured. In
general, a female student’s test score is more subject to both her female and male peers’ average
achievement than a male student. Besides, female classmates’ average education outcome has higher
impact on a student’s, either female or male, Chinese and total test scores, while male classmates
contribute more to a student’s Mathematics academic achievement. Second, we find evidence that
the contextual effect of a student’s relative age (measured by ± month(s) compared with sample
median date of birth) has both competitive effects and complementary effects for a female student.
To be more specific, being in a class with older male classmates would slightly reduce a female
student’s Chinese and Mathematics test scores, while staying with older female classmates can be
beneficiary to a female student’s English and total test scores. Third, by the contextual effect of
mother’s education, we detect the specific channel about how higher classmates’ maternal education
raises a students’ test score (Chung and Zou, 2020), i.e., a female student’s Mathematics and total
test scores are positively affected when her male classmates have higher educated mothers. Those
findings might provide evidence to support some low-cost ways to potentially improve students’
academic performance within the world’s largest school system. Last, the impact of a head teacher
might be entangled with interaction patterns of within and across gender subgroups in the same
class, but under current setting, we are unable to detect the channels, which might be an interesting
topic for future studies.

In the following parts of this paper, Section 2 introduces the model setting, economic foundation
and the quasi-maximum likelihood estimation method. Section 3 discusses the asymptotic prop-
erties of the QMLE, including conditions for identification, proofs for consistency and asymptotic
distribution of the QMLE. Section 4 shows the finite sample performance of our QMLE by Monte
Carlo simulations. Section 5 applies the model to data sets from CEPS and examines heterogeneous
peer and contextual effect in Chinese student academic achievement.

2 Model Formation and the QMLE

2.1 Model Setting

Suppose there are n individual units in an economy. For regularity, we need the following assump-
tions:

Assumption 1 (Heterogeneity Source):
All individuals can be classified into K types

{
Kk

n

}K

k=1
, which satisfy ∪K

k=1Kk
n = n and Kk1

n ∩
Kk2

n = 0 for k1 ̸= k2. K is a constant which does not depend on n.
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Assumption 1 indicates that the heterogeneity is observed and generated by categorical charac-
teristics of individuals. First,

{
Kk

n

}K

k=1
may not be consecutive, which means that the division of

types can be irrelevant to neighborhood relationship among individuals. For example, students com-
ing from the same school/classroom can be divided into subgroups based on their characteristics.
Second, we assume K is a constant, which is consistent with most empirical scenarios since a repre-
sentative sample is needed regardless of the sample size and most of the categorical heterogeneities,
such as gender, race and educational background, only have finitely many types.

Assumption 2 (Group Assignment):
The n individuals belong to G groups {Gg

n}
G
g=1 which satisfy ∪G

g=1Gg
n = n and Gg1

n ∩ Gg2
n = 0 for

g1 ̸= g2. G can be a constant or growing with n.

Assumption 2 assumes the individuals are assigned to different groups and the group assignment
may not be random. First, the assumption about the number of groups G can accommodate two
sampling methods commonly seen in empirical studies: (i) G is fixed, while the group members
grows with sample size n; (ii) group members are fixed, while G grows with n. Second, the groups
in Assumption 2 and categories in Assumption 1 can be different. We treat the heterogeneity and
group assignment as two abstract ways of segmentations of all the individuals n.

Let yi be individual i’s outcome, xi = (xi,1, ..., xi,L)
′ be L univariate exogenous variables for

i, and wij,n be the link captures the impact from individual j to individual i ( wii,n = 0). For

heterogeneity, define hi,k =

1 i ∈ Kk
n

0 i /∈ Kk
n

as the indicator of type identity for individual i and

category k. Similarly, for group assignment, define h̃i,g =

1 i ∈ Gg
n

0 i /∈ Gg
n

as the indicator for whether

individual i belongs to group Gg
n or not. For each individual i, we consider the following model:

yi =

K∑
k=1

λkhi,k

 n∑
j=1

wij,nyj

+

K∑
k=1

hi,k

 n∑
j=1

wij,nx
′

i

 γk

+ x
′

iβ +

G∑
g=1

h̃i,gαg + ui (1)

where ui
i.i.d∼

(
0, σ2

)
. In this model, λk and γk capture the spillover effects from neighbors received

by an individual of category Kk
n directly or indirectly, i.e., peer and contextual effects respectively.

β measure the effects from external regressors which are only associated with the individual him-
self/herself. αg is a group-level fixed effect of group Gg

n , which captures the common factors, either
observed or unobserved, faced by all group members.

Let Yn = (y1, · · · , yn)
′
, Xn = (x1, · · · , xn)

′
, Wn = (wij,n)n×n, Hk,n = diag (h1,k, · · · , hn,k),

α = (α1, · · · , αG)
′
, HG =

(
h̃1, · · · , h̃G

)′

where h̃g =
(
h̃1,g, · · · , h̃n,g

)′

, and un = (u1, · · · , un)
′
. We
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can rewrite the model into the following matrix form:

Yn =

K∑
k=1

λkHk,nWnYn +

K∑
k=1

Hk,nWnXnγk +Xnβ +HGα+ un (2)

Equation (1)(or (2)) is the single network specification, in Section 2.4, we consider a simple extension
to the multiple networks specification.

2.2 Economic Foundation

The above model setting captures externalities from social interactions through a network, and
allows the levels of externalities to be associated with individuals’ types. When individual i’s
outcome yi reflects his/her action, it can be regarded as a model of the Nash equilibrium of a static
complete information game with different types of players processing the following linear-quadratic
utility function:

ui (yi) = yi

x
′

iβ +

n∑
j=1

wij,nx
′

iγk + αg + vi

− 1

2

yi − λk

n∑
j=1

wij,nyj

2

(3)

for individual i who has type k and belongs to group Gg
n. The first component represents private

utility associated with his/her own action yi which includes contextual effects from other individuals’
characteristics, group fixed effects and random effects (notation changed from ui to vi to avoid
ambiguity). The second component captures the interaction with neighbors, which is a conformity
effect directly associated with neighbors’ actions. The unique equilibrium outcome of individual
i can be obtained by maximizing ui (yi) with respect to yi, and is exactly described by equation
(1)4. Unlike the SAR situation in Brock and Durlauf (2001), the conformity effect here does depend
on the type of i himself/herself. For example, female and male students will receive different peer
effects from their classmates, and also students of different gender have distinct sensitive levels to
average peer outcome.

2.3 QML Approach and Bias Correction

In existing literature, Lee (2007) demonstrates that in his model both endogenous and contextual
effects are identifiable if group sizes are not constant, and that weak identification can occur in
the case of large group sizes. Lin (2010)’s “de-group-mean” approach generalizes Lee (2007) by
allowing the case when all the group sizes are identical. However, the “de-group-mean” approach
has two limitations. First, it is only suitable to the scenario that individuals only interact with other
individuals inside the same group. But it doesn’t make sense in some empirical applications. For
example, when studying the impact of peer effects on education outcomes, not only can students
interact with their classmates, but they might also make friends with students in other classes by
out-of-school activities via some sports and arts associations. Without considering the impact from
friends outside the group, the peer and contextual effect might be misspecified. Second, even if a

4Note that hi,k and h̃i,g are indicator variables.
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group member only interact with other group members, when heterogeneity is introduced into the
social interaction models, the “de-group-mean” transformation of data before forming the likelihood
function in Lin (2010) is still not a good way to deal with group fixed effects, below is an illustration.
Assume for each group Gg

n, we have

Yg =

K∑
k=1

λkHk,gWgYg +

K∑
k=1

Hk,gWgXgγk + αg + ug (4)

where Yg and Xg are the vector and matrix of outcomes and characteristics of the members in group
Gg
n. Wg and Hk,g are defined similar as Wn and Hk,n for the adjacent matrix and heterogeneity

source categories for group Gg
n. Let mg be the number of individuals in group Gg

n, to eliminate αg,
the “de-group-mean” approach suggests that we can multiply Jg = Img − 1

mg
lgl

′

g, where lg is the
mg-dimensional vector of ones, on both RHS and LHS of (4). Then,

JgYg =

K∑
k=1

λkJgHk,gWgYg +

K∑
k=1

JgHk,gWgXgγk + Jgug

At first glance, it is similar to equation (6) in Lin (2010). However, due to the presence of the
heterogeneity matrices Hk,g, JgHk,gWgYg ̸= JgHk,gWgJgYg and JgHk,gWgXg ̸= JgHk,gWgJgXg,
even when Wg is row-normalized because Hk,gWg will always have some rows with all zero elements.
Thus, Lee (2007) and Lin (2010)’s approaches can not be applied when heterogeneity is introduced
to the model. Due to both empirical and theoretical limitations discussed, in this paper, we consider
another approach: direct estimation approach by jointly estimating the parameters and group fixed
effect.

For notation simplicity, let Λ = (λ1, · · · , λK)
′
, φ =

(
γ

′

1, · · · , γ
′

K , β
′
)′

where γk = (γk,1, ...γk,L)
′

for k = 1, ...,K and β = (β1, .., βL)
′, Zn = (H1,nWnXn, · · · , HK,nWnXn, Xn)

′
, and Sn (Λ) =

In−
∑K

k=1 λkHk,nWn, the log-likelihood function of the model in Section 2.1 under un ∼ N
(
0, σ2In

)
is

lnLn (θ, α) = −n

2
ln (2π)− n

2
lnσ2 + ln |Sn (Λ)| −

1

2σ2
u

′

θ,αuθ,α (5)

where uθ,α = Sn (Λ)Yn − Znφ −HGα and θ =
(
Λ

′
, φ, σ2

)′

. To make sure the likelihood function
exist and the model can be identified, we need the following assumption:

Assumption 3:
Sn (Λ) is invertible and Zn is full rank.

Following existing literature (e.g., Yu et al. (2008)), when fixed effects appear in the likelihood
function, by first order condition of α, i.e. ∂ lnLn(θ,α)

∂α = 1
σ2H

′

Guθ,α = 0, we can concentrate out
group fixed effects and get the following concentrated log-likelihood function:

lnLn (θ) = −n

2
ln (2π)− n

2
lnσ2 + ln |Sn (Λ)| −

1

2σ2
ũ

′

θH̃
′

GH̃Gũθ (6)
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with H̃G = In−HGM
−1
G H

′

G and ũθ = Sn (Λ)Yn−Znφ, where MG = H
′

GHG = diag (m1, · · · ,mG),
and mg is the number of individuals in group Gg

n. Note MG is always invertible. In Section 3,
we will discuss the identification and asymptotic properties of QMLE based on the concentrated
log-likelihood function (6), since it is easier for us to discuss the asymptotic distributions of θ and
α separately.

However, due to the existence of heterogeneity, there are still too many parameters in (6)

which might be demanding to maximize it directly through numerical searches. To simplify the
maximization problem, concentrating out as many parameters as possible further is the best way
to numerically compute the QMLE. From (5), we can also get the following first order derivatives:

∂ lnLn (θ, α)

∂σ2
= − n

2σ2
+

1

2σ4
u

′

θ,αuθ,α (7)

∂ lnLn (θ, α)

∂φ
=

1

σ2
Z

′

nuθ,α (8)

When the log-likelihood function is maximized, (7) and (8) are all equal to zero and we can
solve α, σ2 and φ by representing them as functions of Λ:

α = M−1
G H

′

G (In − ZnAn)Sn (Λ)Yn (9)

σ2 =
1

n
Y

′

nS
′

n (Λ)B
′

nBnSn (Λ)Yn (10)

φ = AnSn (Λ)Yn (11)

where An =
(
Z

′

nH̃GZn

)−1

Z
′

nH̃G and Bn = H̃G (In − ZnAn). With Assumption 3, the invertibility
of matrices showed in (9), (10) and (11) can be guaranteed. Then backing out the results to (6)

yields the concentrated log-likelihood function which only contains parameter Λ:

Qn (Λ) = −n

2
[1 + ln (2π)]− n

2
ln

[
1

n
Y

′

nCn (Λ)Yn

]
+ ln |Sn (Λ)| (12)

where Cn (Λ) = S
′

n (Λ)B
′

nBnSn (Λ). As the number of parameters reduced from (K + 1)(L+ 1) 5

to K by further concentration, the computational time can be greatly reduced.
However, concentrated QMLE by maximizing (12) would have asymptotic bias. To see this, at

true parameter (θ0, α0), we have
5(K + 1)(L+ 1) +G if group fixed effects are considered
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∂Qn (Λ0)

∂λk
=

nY
′

n (Hk,nWn)
′
B

′

nBnSn (Λ0)Yn

Y ′
nCn (Λ0)Yn

− tr
(
Hk,nWnS

−1
n

)

=

[
BnW̃n,kS

−1
n (Znφ0 +HGα0 + un)

]′

un

σ2
0

− tr
(
W̃n,kS

−1
n

)
= −tr (Gn,k) +

1

σ2
0

[
BnW̃n,kS

−1
n (Znφ0 +HGα0)

]′

un

+
1

σ2
u

′

n (BnGn,k)
′
un (13)

where W̃n,k = Hk,nWn, Sn = Sn (Λ0) = In−
∑K

k=1 λk,0W̃n,k and Gn,k = W̃n,kS
−1
n for k = 1, · · · ,K.

In (13), the expectation of linear term 1
σ2
0

[
BnW̃n,kS

−1
n (Znφ0 +HGα0)

]′

un is zero, but for the
remaining part, we have

E

[
1

σ2
u

′

n (BnGn,k)
′
un − tr (Gn,k)

]
=tr (BnGn,k)− tr (Gn,k) ̸= 0

Thus, let ∆k,n

(
Λ̂n

)
= tr

[
(In −Bn) W̃n,kS

−1
n

(
Λ̂n

)]
and ΣΛ̂n,n

=
∂2Q(Λ̂n)
∂Λ∂Λ′ , by Taylor expansion

∂Q
∂Λ

(
Λ̂
)
− ∂Q

∂Λ (Λ0) = Σ−1

Λ̂n,n

(
Λ̂− Λ0

)
+op

(
Λ̂− Λ0

)
, we have the following bias corrected estimator

for Λ,

Λ̂bc,n = Λ̂n +Σ−1

Λ̂n,n
∆n

(
Λ̂n

)
(14)

where ∆n

(
Λ̂n

)
=

(
∆1,n

(
Λ̂n

)
, · · · ,∆K,n

(
Λ̂n

))′

. In Section 4, we will compare the performance
of the concentrated QMLE with and without bias correction by Monte Carlo simulations.

2.4 A Simple Extension: Multiple Networks Situation

In many empirical applications, it’s more natural to consider a multiple networks setting instead
of a single network specification. For example, high school students may have multiple social links
with different groups of people, like classmates, friends in student associations or sports clubs. So
we may be interested in estimating heterogeneous peer effects and contextual effects in student
academic achievement under multiple networks setting. In this case, the model described in (1) can
be easily extended to accommodate this scenario:

yi =

R∑
r=1

K∑
k=1

λr,khi,k

 n∑
j=1

wij,r,nyj

+

R∑
r=1

K∑
k=1

hi,k

 n∑
j=1

wij,r,nx
′
i

 γr,k+x′
iβ+

G∑
g=1

h̃i,gαg+ui (15)
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where wij,r,n is the impact from j to i in the network r (wii,r,n = 0). λr,k and γr,k capture the
heterogeneous peer and contextual effects from network r for type k individuals. Denote Wr,n =

(wij,r,n), where Wr,n, · · · ,WR,n are R different networks among the individuals, we can rewrite
equation (15) in matrix form:

Yn =

R∑
r=1

K∑
k=1

λr,kHk,nWr,nYn +

R∑
r=1

K∑
k=1

Hk,nWr,nXnγr,k +Xnβ +HGα+ un (16)

Let Λ = (λ1,1, · · · , λ1,K , · · · , λR,1, · · · , λR,K)
′
, φ =

(
γ

′

1,1, · · · , γ
′

1,K , · · · , γ′

R,1, · · · , γ
′

R,K , β
′
)′

, Zn =

(H1,nW1,nXn, · · · , HK,nW1,nXn, · · · , H1,nWR,nXn, · · · , HK,nWR,nXn, Xn)
′
and

Sn (Λ) = In −
∑R

r=1

∑K
k=1 λr,kHk,nWr,n, the maximum likelihood function is

lnLn (θ, α) = −n

2
ln (2π)− n

2
lnσ2 + ln |Sn (Λ)| −

1

2σ2
u

′

θ,αuθ,α

which has exactly the same form as the maximum likelihood function (5) for the single network
specification. Since the major difference is that there are more parameters in Λ and φ, the con-
centrated approach discussed in Section 2.3 are also applicable as φ are linear parameters that can
be concentrated out. Define W̃n,r,k = Hk,nWr,n and Gn,r,k = W̃n,r,kS

−1
n , by replacing W̃n,r,k and

Gn,r,k, the concentrated log-likelihood functions have the same form as (5) and (12)6. The biased
correction approach is also the same as (14) with slight modification.

3 Asymptotic Properties of the QMLE

We focus on the single network specification for the discussion of asymptotic properties of the
QMLE since the difference of the maximum likelihood functions and the bias correction procedure
between the single network and multiple networks scenarios are modest, i.e., they only differ in the
number of Λ and φ and some changes of notations.

3.1 Identification

As stated in the last section, we will discuss the property of QMLE based on the concentrated
log-likelihood function (6) due to the convenience to separately discuss the properties of estimators
for group fixed effects and other parameters. The identification conditions below are based on
Rothenberg (1971). The expected log-likelihood function for equation (6) is

Qn(θ) = E lnLn(θ)

= −n

2
ln(2π)− n

2
lnσ2 + ln |Sn(Λ)| −

1

2σ2
E(ũ

′

θH̃
′

GH̃Gũθ) (17)

Then φn(Λ) = argmaxφ Qn(θ) = [Z
′

nH̃GZn]
−1Z

′

nH̃GSn(Λ)S
−1
n Znφ0 for each Λ = (λ1, ..., λK)

′
, and

6By the concentrated log-likelihood function for numerical searches, the number of parameters now can be reduced
from (KR+ 1)(L+ 1) (or (KR+ 1)(L+ 1) +G if the group fixed effects are considered) to KR.
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E
(
ũ

′

θH̃
′

GH̃Gũθ

)
=E[(Sn(Λ)Yn − Znφn(Λ))

′
H̃

′

GH̃G(Sn(Λ)Yn − Znφn(Λ))]

=[BnSn(Λ)S
−1
n Znφ0]

′
(BnSn(Λ)S

−1
n Znφ0) + σ2

0tr(S
′−1
n S

′

n(Λ)Sn(Λ)S
−1
n ) (18)

Observe that Sn(Λ)S
−1
n = In + (λ1,0 − λ1)Gn,1 + (λ2,0 − λ2)Gn,2 + . . .+ (λK,0 − λK)Gn,K , hence

E(ũ
′

θH̃
′

GH̃Gũθ)

=(Λ0 − Λ)
′
(Gn,1Znφ0, . . . , Gn,KZnφ0)

′
B

′

nBn(Gn,1Znφ0, . . . , Gn,KZnφ0)(Λ0 − Λ)

+σ2
0tr(S

′−1
n S

′

n(Λ)Sn(Λ)S
−1
n ) (19)

by using the property that BnZn = H̃G(In − ZnAn)Zn = 0. Then we obtain

σ2
n(Λ) = argmax

σ2
Qn(Λ, φn(Λ), σ

2)

=
1

n
(Λ0 − Λ)

′
(Gn,1Znφ0, . . . , Gn,KZnφ0)

′
B

′

nBn(Gn,1Znφ0, . . . , Gn,KZnφ0)(Λ0 − Λ)

+
σ2
0

n
tr(S

′−1
n S

′

n(Λ)Sn(Λ)S
−1
n ) (20)

Define Qn(Λ) = Qn(Λ, φn(Λ), σ
2
n(Λ)), we consider

Qn(Λ)−Qn(Λ0)

= −1

2
(lnσ2

n(Λ)− lnσ2
0) +

1

n
(ln |Sn(Λ)| − ln |Sn|)

=
1

2

[
ln |S

′−1
n S

′

n(Λ)Sn(Λ)S
−1
n | 1

n − ln
( 1

n
tr(S

′−1
n S

′

n(Λ)Sn(Λ)S
−1
n )

+
1

nσ2
0

(Λ0 − Λ)
′
(Gn,1Znφ0, . . . , Gn,KZnφ0)

′
B

′

nBn(Gn,1Znφ0, . . . , Gn,KZnφ0)(Λ0 − Λ)
)]

A unique identification condition requires that Qn(Λ) − Qn(Λ0) < 0 when Λ ̸= Λ0 under large n.
Above equation takes a form of 1

2

[
ln |D| 1

n − ln( 1n tr(D) +Q)
]
, where D is a symmetric matrix and

Q is a non-negative quadratic form.
There are two identification sources. Since all eigenvalues of S

′−1
n S

′

n(Λ)Sn(Λ)S
−1
n are real and

positive, and each one is denoted by Ψi(Λ), then |S′−1
n S

′

n(Λ)Sn(Λ)S
−1
n | 1

n = (
∏n

i Ψi(Λ))
1
n and

1
n tr(S

′−1
n S

′

n(Λ)Sn(Λ)S
−1
n ) = 1

n

∑n
i Ψi(Λ). By the inequality of arithmetic and geometric means,

1
n

∑n
i Ψi(Λ) ≥ (

∏n
i Ψi(Λ))

1
n . The first identification source can be obtained if 1

n

∑n
i Ψi(Λ) >

(
∏n

i Ψi(Λ))
1
n when Λ ̸= Λ0. It can be achieved when S

′−1
n S

′

n(Λ)Sn(Λ)S
−1
n is not proportional to In

when Λ ̸= Λ0 (Claim 1 provides a sufficient (not necessary) condition for this requirement). The
second identification source is the “Q-term”. Λ0 can be identified if

lim
n→∞

1

n
(Gn,1Znφ0, . . . , Gn,KZnφ0)

′
B

′

nBn(Gn,1Znφ0, . . . , Gn,KZnφ0)

exists and is nonsingular. This condition ensures that the set of regressors [Gn,1Znφ0, . . . , Gn,KZnφ0]
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have no multicollinearity.

Claim 1:
Since W̃n,k is not symmetric (i.e., HkWn ̸= W

′

nH
′

k), if In, W̃n,k + W̃
′

n,k for k = 1, ...,K,
W̃

′

n,1W̃n,1, . . . , W̃
′

n,1W̃n,K , . . . , W̃
′

n,KW̃n,1, . . . , W̃
′

n,KW̃n,K are linearly independent, S
′−1
n S

′

n(Λ)Sn(Λ)S
−1
n

is not proportional to In when Λ ̸= Λ0.
Proof :
For some constant c, suppose S

′−1
n S

′

n(Λ)Sn(Λ)S
−1
n = cIn, i.e., S

′

n(Λ)Sn(Λ) = cS
′

nSn. Then we
have

0 = (1− c)In −
K∑

k=1

(λk − cλk,0)(W̃n,k + W̃
′

n,k)

+ (λ2
1 − cλ2

1,0)W̃
′

n,1W̃n,1 + . . .+ (λ1λK − cλ1,0λK,0)W̃
′

n,1W̃n,K

+ . . .

+ (λKλ1 − cλK,0λ1,0)W̃
′

n,KW̃n,1 + . . .+ (λ2
K − cλ2

K,0)W̃
′

n,KW̃n,K (21)

The linear independence assumption implies that c = 1, λ1 = λ1,0, λ2 = λ2,0,. . ., λK = λK,0. �

3.2 Consistency

For consistency, we need the following assumptions:

Assumption 4:
Denote cu = supn||Wn||1, cw = supn||Wn||∞. The sequence {Wn} satisfies max{cu, cw} < ∞,

i.e., it’s uniformly bounded in both row and column sum norms. ΘΛ denotes a compact parameter
space for Λ and assume that Λ0 belongs to the interior of ΘΛ. The sequence {S−1

n (Λ)} satisfies
maxΛ∈ΘΛ

{supn||S−1
n (Λ)||∞, supn||S−1

n (Λ)||1} < ∞.

Assumption 5:
Elements of Xn have uniformly bounded constants. Or, if one wants to assume that Xn is

stochastic, then maxl=1,··· ,Lsupn,iE|xi,l|4+η < ∞ for some η > 0; and Xn and un are independent.
Also, limn→∞X

′

nXn exists and is nonsingular.

Assumption 6:
The parameter space Θ of θ is compact. The true value θ0 belongs to the interior of Θ.

Assumption 7:
ui

i.i.d.∼ (0, σ2
0) with σ2

0 > 0, and supn,iE |ui| 4+η < ∞ for some η > 0.

Assumption 8 (Identification):
At least, one of the two conditions holds:
(i) S

′−1
n S

′

n(Λ)Sn(Λ)S
−1
n is not proportional to In when Λ ̸= Λ0;

11



(ii) limn→∞
1
n (Gn,1Znφ0, . . . , Gn,KZnφ0)

′
B

′

nBn(Gn,1Znφ0, . . . , Gn,KZnφ0) exists and is non-
singular.

With global identification (Assumption 8), it suffices to show that supθ∈Θ
1
n |lnLn(θ)− E lnLn(θ)|

p−→
0 and the uniform equicontinuity of {E lnLn(θ)

n }∞n=1. Then, we have:

Theorem 1:
Under Assumption 1-8, the QMLE of θ is consistent.

Proof:
With global identification (Assumption 8), it suffices to show that supθ∈Θ

1
n |lnLn(θ)− E lnLn(θ)|

p→
0 (uniform convergence) and the uniform equicontinuity of {E lnLn(θ)

n }∞n=1, then we can get consis-
tency.

Proof of the uniform convergence:
Denote

Ṽn(Λ, φ) = H̃Gũθ

= H̃GYn −
K∑

k=1

λkH̃GW̃n,kYn − H̃GZnφ

= Ṽn −
K∑

k=1

(λk − λk,0)H̃GW̃n,kYn − H̃GZn(φ− φ0)

where Ṽn = Ṽn (Λ0, φ0).

Then we have

Ṽ
′

n(Λ, φ)Ṽn(Λ, φ)

=Ṽ
′

nṼn +

K∑
k=1

(λk − λk,0)(H̃GW̃n,kYn)
′

K∑
k=1

(λk − λk,0)H̃GW̃n,kYn

+(φ− φ0)
′
(H̃GZn)

′
H̃GZn(φ− φ0) + 2

K∑
k=1

(λk − λk,0)(H̃GW̃n,kYn)
′
H̃GZn(φ− φ0)

−2

K∑
k=1

(λk − λk,0)(H̃GW̃n,kYn)
′
Ṽn − 2(φ− φ0)

′
(H̃GZn)

′
Ṽn (22)

Using H̃GW̃n,kYn = H̃GGn,kZnφ0 + H̃GGn,kṼn, for ∀k1, k2 = 1, . . . ,K, we have

(H̃GW̃n,k1Yn)
′
(H̃GW̃n,k2Yn)

=(H̃GGn,k1
Znφ0)

′
(H̃GGn,k2

Znφ0) + (H̃GGn,k1
Ṽn)

′
(H̃GGn,k2

Ṽn)

+(H̃GGn,k1
Znφ0)

′
(H̃GGn,k2

Ṽn) + (H̃GGn,k1
Ṽn)

′
(H̃GGn,k2

Znφ0) (23)
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Under Assumptions 4 - 8, note that H̃
′

GH̃G = H̃G, for any n × n non-stochastic uniformly
bounded matrices P1n and P2n,

1

n
(H̃GP1nZn)

′
(H̃GP2nZn)− E

1

n
(H̃GP1nZn)

′
(H̃GP2nZn) = Op(

1√
n
)

1

n
(H̃GP1nZn)

′
(H̃GP2nṼn)− E

1

n
(H̃GP1nZn)

′
(H̃GP2nṼn) = Op(

1√
n
)

1

n
(H̃GP1nṼn)

′
(H̃GP2nṼn)− E

1

n
(H̃GP1nṼn)

′
(H̃GP2nṼn) = Op(

1√
n
) (24)

where E 1
n (H̃GP1nZn)

′
(H̃GP2nZn) is O(1), E 1

n (H̃GP1nZn)
′
(H̃GP2nṼn) is O( 1√

n
), E 1

n (H̃GP1nṼn)
′
(H̃GP2nṼn)

is O(1). Since Λ and φ are bounded in Θ, we have 1
n Ṽ

′

n(Λ, φ)Ṽn(Λ, φ)− E 1
n Ṽ

′

n(Λ, φ)Ṽn(Λ, φ)
p−→ 0

uniformly in θ in Θ. Note that

1

n
lnLn(θ) = −1

2
ln 2π − 1

2
lnσ2 +

1

n
ln |Sn(Λ)| −

1

2σ2n
Ṽ

′

n(Λ, φ)Ṽn(Λ, φ)

since σ2 is bounded away from zero in Θ, then

supθ∈Θ

1

n
|lnLn(θ)− E lnLn(θ)|

=supθ∈Θ

∣∣∣∣− 1

2σ2
(
1

n
Ṽ

′

n(Λ, φ)Ṽn(Λ, φ)− E
1

n
Ṽ

′

n(Λ, φ)Ṽn(Λ, φ)

∣∣∣∣
p→0 (25)

Proof of the uniform equicontinuity:
Since Ṽn(Λ, φ) = H̃GSn(Λ)S

−1
n Znφ0 − H̃GZnφ+ H̃GSn(Λ)S

−1
n ũθ0 , we have

E
1

n
Ṽ

′

n(Λ, φ)Ṽn(Λ, φ) =
1

n
E[H̃GSn(Λ)S

−1
n Znφ0 − H̃GZnφ]

′
[H̃GSn(Λ)S

−1
n Znφ0 − H̃GZnφ]︸ ︷︷ ︸

Term 1

+
1

n
σ2
0tr(S

′−1
n S

′

n(Λ)Sn(Λ)S
−1
n )︸ ︷︷ ︸

Term 2

+
2

n
E[H̃GSn(Λ)S

−1
n Znφ0 − H̃GZnφ]

′
[H̃GSn(Λ)S

−1
n Ṽn]︸ ︷︷ ︸

Term 3

(26)

Term 3 is a polynomial function in θ, Θ is bounded, then Term 3 is O( 1√
n
) uniformly in θ in

Θ. Term 1 is equivalent to
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ω
′
E


Z

′

nZn (Gn,1Zn)
′
Zn . . . (Gn,KZn)

′
Zn

Z
′

nGn,1Zn (Gn,1Zn)
′
Gn,1Zn . . . (Gn,KZn)

′
Gn,1Zn

...
...

...
Z

′

nGn,KZn (Gn,1Zn)
′
Gn,KZn . . . (Gn,KZn)

′
Gn,KZn


︸ ︷︷ ︸

EJn

ω

where ω =
(
φ

′ − φ
′

0, λ1 − λ1,0, . . . , λK − λK,0

)′

.
Using Sn(Λ)S

−1
n = In − (λ1 − λ1,0)Gn,1 − . . . − (λK − λK,0)Gn,K . Term 2 are all polynomial

functions of θ. To show {E lnLn(θ)
n }∞n=1, we need four sufficient conditions:

(a) lnσ2 is uniformly continuous, which is satisfied because σ2 is bounded away from zero in Θ;
(b) 1

n ln |Sn(Λ)| is uniformly equicontinuous. Note 1
n ln |Sn(Λ1)|− 1

n ln |Sn(Λ2)| = 1
n tr(WnS

−1
n (Λ̄))(Λ2−

Λ1), where Λ̄ lies between Λ1 and Λ2. As maxΛ∈ΘΛ{supn||S−1
n (Λ)||∞, supn||S−1

n (Λ)||1} < ∞,
1
n tr(WnS

−1
n (Λ̄)) is bounded, the condition is satisfied;

(c) ω
′
EJnω is uniformly equicontinuous since φ and λ are bounded and EJn is O(1);

(d) σ2
n(Λ) =

σ2
0

n tr(S
′−1
n S

′

n(Λ)Sn(Λ)S
−1
n ) is uniformly equicontinuous. Note that

σ2
n(Λ2)− σ2

n(Λ1)

=
σ2
0

n
tr(S

′−1
n S

′

n(Λ2)Sn(Λ2)S
−1
n )− σ1

0

n
tr(S

′−1
n S

′

n(Λ1)Sn(Λ1)S
−1
n )

=σ2
0

[ K∑
k=1

(λ
(1)
k − λ

(2)
k )tr(G

′

n,k +Gn,k)

n
+

K∑
k=1

(λ
(2)
k − λ

(1)
k )(λ

(1)
k + λ

(2)
k − 2λk,0)tr(G

′

n,kGn,k)

n

+

K∑
k1=1

K∑
k2=1

(
(λ

(2)
k1

λ
(2)
k2

− λ
(1)
k1

λ
(1)
k2

) + λk1,0(λ
(1)
k2

− λ
(2)
k2

) + λk2,0(λ
(1)
k1

− λ
(2)
k1

)
)
tr(G

′

n,k1
Gn,k2

)

n

]
(27)

by using Sn(Λ)S
−1
n = In−(λ1−λ1,0)Gn,1− . . .−(λK−λK,0)Gn,K . Since for any k = 1, . . . ,K; k1 =

1, . . . ,K; k2 = 1, . . . ,K, Gn,k, G
′

n,kGn,k and G
′

n,k1
Gn,k2 are uniformly bounded, then σ2

n(Λ) is
uniformly equicontinuous. �

3.3 Asymptotic Distribution of the QMLE

To derive the asymptotic distribution, first, we need to decompose the first order derivatives (eval-
uated at true parameter values) as 1√

n
∂ lnLn(θ0)

∂θ = 1√
n

lnL(ν)
n (θ0)
∂θ − ∆̃n, where

1√
n

lnL
(ν)
n (θ0)

∂θ
=



− 1√
n
tr[(H̃

′

GH̃G)Gn,1] +
1√
n

1
σ2
0
[(W̃n,1Yn)

′
(H̃

′

GH̃G)un]

...
− 1√

n
tr[(H̃

′

GH̃G)Gn,K ] + 1√
n

1
σ2
0
[(W̃n,KYn)

′
(H̃

′

GH̃G)un]
1√
n

1
σ2
0
Z

′

n(H̃
′

GH̃G)un

− 1√
n

1
2σ2

0
tr(H̃

′

GH̃G) +
1√
n

1
2σ4

0
u

′

n(H̃
′

GH̃G)un


(28)
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and

1√
n
∆̃n =



1√
n
tr[(In − H̃

′

GH̃G)Gn,1]
...

1√
n
tr[(In − H̃

′

GH̃G)Gn,K ]

0
1√
n

1
2σ2

0
tr(In − H̃

′

GH̃G)


(29)

The second order conditions are as follows:

∂ lnLν
n(θ0)

∂λk∂λk
= −tr[(H̃

′

GH̃G)G
2
n,k]−

1

σ2
0

(W̃n,kYn)
′
(H̃

′

GH̃G)(W̃n,kYn), for k = 1, . . . ,K

∂ lnLν
n(θ0)

∂λk1∂λk2

= −tr[(H̃
′

GH̃G)(Gn,k1
Gn,k2

)]− 1

σ2
0

(W̃n,k1
Yn)

′
(H̃

′

GH̃G)(W̃n,k2
Yn), for k1, k2 = 1, . . . ,K

∂ lnLν
n(θ0)

∂λk∂φ
= − 1

σ2
0

(W̃n,kYn)
′
(H̃

′

GH̃G)Zn

∂ lnLν
n(θ0)

∂λk∂σ2
= − 1

σ4
0

(W̃n,kYn)
′
(H̃

′

GH̃G)un

∂ lnLν
n(θ0)

∂φ∂φ
= − 1

σ2
0

Z
′

n(H̃
′

GH̃G)Zn

∂ lnLν
n(θ0)

∂φ∂σ2
= − 1

σ4
0

Z
′

n(H̃
′

GH̃G)un

∂ lnLν
n(θ0)

∂σ2∂σ2
=

1

2σ4
0

tr(H̃
′

GH̃G)−
1

σ6
0

u
′

n(H̃
′

GH̃G)un

As H̃
′

GH̃G = H̃G, the variance matrix of 1√
n

lnLn(θ0)
∂θ is equal to
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E(
1√
n

lnLn(θ0)

∂θ
· 1√

n

lnLn(θ0)

∂θ′ )

=



a11 a12 . . . a1K
1

σ2
0n

(G̃n,1(Znφ0 +HGα0))
′
Z̃n

1
nσ2

0
tr(G̃n,1)

∗ a22 . . . a2K
1

σ2
0n

(G̃n,2(Znφ0 +HGα0))
′
Z̃n

1
nσ2

0
tr(G̃n,2)

...
...

. . .
...

...
...

∗ ∗ . . . aKK
1

σ2
0n

(G̃n,K(Znφ0 +HGα0))
′
Z̃n

1
nσ2

0
tr(G̃n,K)

∗ ∗ . . . ∗ 1
σ2
0n

Z̃
′

nZ̃n 0

∗ ∗ . . . ∗ ∗ n−G
2σ4

0n


︸ ︷︷ ︸

Σθ0,n

+



b11 b12 . . . b1K
µ3,0

σ4
0n

vec
′

D

(
G̃n,1

)
Z̃n

µ3,0

2σ6
0n

(
G̃n,1 (Znφ0 +HGα0)

)′

ln +
µ4,0−3σ4

0

2σ6
0n

tr(G̃n,1)

∗ b22 . . . b2K
µ3,0

σ4
0n

vec
′

D

(
G̃n,2

)
Z̃n

µ3,0

2σ6
0n

(
G̃n,2 (Znφ0 +HGα0)

)′

ln +
µ4,0−3σ4

0

2σ6
0n

tr(G̃n,2)

...
...

. . .
...

...
...

∗ ∗ . . . bKK
µ3,0

σ4
0n

vec
′

D

(
G̃n,K

)
Z̃n

µ3,0

2σ6
0n

(
G̃n,K (Znφ0 +HGα0)

)′

ln +
µ4,0−3σ4

0

2σ6
0n

tr(G̃n,K)

∗ ∗ . . . ∗ 0
µ3,0

2σ6
0n

Z̃
′

nln

∗ ∗ . . . ∗ ∗ µ4,0−3σ4
0

4σ8
0n

· (n−G)


︸ ︷︷ ︸

Ωθ0,n−Σθ0,n

with

akk =
1

σ2
0n

(
G̃n,k(Znφ0 +HGα0)

)′(
G̃n,k(Znφ0 +HGα0)

)
+

1

n

(
tr(G̃

′

n,kG̃n,k) + tr(G̃2
n,k)

)
,

ak1k2
=

1

σ2
0n

(
G̃n,k1

(Znφ0 +HGα0)
)′(

G̃n,k2
(Znφ0 +HGα0)

)
+

1

n

(
tr(G̃

′

n,k1
G̃n,k2

) + tr
(
G̃n,k1

G̃n,k2

))
,

bkk =
2µ3,0

σ4
0n

(
G̃n,k(Znφ0 +HGα0)

)′

vecD

(
G̃n,k

)
+

µ4,0 − 3σ4
0

σ4
0n

vec
′

D

(
G̃n,k

)
vecD

(
G̃n,k

)
bk1k2 =

µ3,0

σ4
0n

(
G̃n,k1(Znφ0 +HGα0)

)′

vecD

(
G̃n,k2

)
+

µ3,0

σ4
0n

(
G̃n,k2(Znφ0 +HGα0)

)′

vecD

(
G̃n,k1

)
+

µ4,0 − 3σ4
0

σ4
0n

vec
′

D

(
G̃n,k1

)
vecD

(
G̃n,k2

)
,

for ∀ k, k1, k2 = 1, . . . ,K, where G̃n,k = H̃GGn,k, Z̃n = H̃GZn. (µ4,0 − 3σ4
0 = 0 if un are normally

distributed). Note that, for the multiple networks situation, we have more terms in the above
matrix and need to replace akk, ak1k2

, bkk and bk1k2
with a(r,k),(r,k), a(r1,k3)(r2,k4), b(r,k),(r,k) and

b(r1,k3)(r2,k4), where ∀ r, r1, r2 = 1, . . . , R and ∀ k, k3, k4 = 1, . . . ,K.

Now, we need an assumption for the information matrix:

Assumption 9:
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Σθ0 = limn→∞Σθ0,n is nonsingular where Σθ0,n = E(− 1
n

∂2 lnLn(θ0)

∂θ∂θ′ ).

Then, we have

Theorem 2:
With Assumption 1-9, we have

√
n(θ̂cn − θ0)

d−→ N(0,Σ−1
θ0

Ωθ0Σ
−1
θ0

) where θ̂cn = θ̂n +Σ−1

θ̂,n
∆̃n(θ̂n).

Proof:
Based on Taylor expansion,

√
n(θ̂cn − θ0) = (− 1

n
∂2 lnLn(θ̄n)

∂θ∂θ′ )−1 · ( 1√
n

∂ lnL(ν)
n (θ0)
∂θ − ∆̃n), where

θ̄n lies between θ̂c and θ0, and 1√
n

∂ lnLn(θ0)
∂θ = 1√

n

∂ lnL(ν)
n (θ0)
∂θ − ∆̃n, ∆̃n = O(1). First, we show

the asymptotic distribution of 1√
n

∂ lnL(ν)
n (θ0)
∂θ . Note that 1√

n

∂ lnL(ν)
n (θ0)
∂θ generally takes the following

linear-quadratic form:

Sn =
1

σ2
0

√
n
T

′

nun +
1

σ2
0

√
n

(
u

′

nRnun − σ2
0tr(Rn)

)
where Tn = (t1, . . . , tn)

′
is a vector of constants, Rn is an n-dimensional uniformly bounded sym-

metric matrix in both row and column sum (see Assumption 4). Sn can be represented by a single
summation Sn = 1√

n

∑n
i=1 qi,n where qi,n = tiui + ri(u

2
i − σ2

0) + 2ui

∑i−1
i′=1

rii′uiu
′

i. We can define
a σ-field Fi,n = σ(u1, . . . , ui) for i = 1, . . . , n and F0,n = {ϕ,Ω}, a martingale difference double
array {(qi,n,Fi,n)|1 ≤ i ≤ n} can be formulated, then E(qi,n|Fi−1,n) = 0. Then we can apply the
martingale central limit theorem to Sn, Sn

σSn

d−→ N(0, 1) as n → ∞, and σ2
Sn

=
∑n

i=1 E(q2i,n) (refer

to Lemma 13 and its proof in Yu et al. (2008)). As σ2
Sn

n is bounded away from zero, we have

1√
n

∂ lnL
(ν)
n (θ0)

∂θ

d→ N(0,Ωθ0)

where Ωθ0 = limn→∞Ωθ0,n and Ωθ0,n = E( 1√
n

lnL(ν)
n (θ0)
∂θ · 1√

n

lnL(ν)
n (θ0)
∂θ ).

Second, we need to show that 1
n |

∂2 lnLn(θ̄n)

∂θ∂θ′ −E ∂2 lnLn(θ0)

∂θ∂θ′ | p−→ 0. By Assumption 4 and the con-

sistency proof, we can establish 1
n |

∂2 lnLn(θ0)

∂θ∂θ′ −E ∂2 lnLn(θ0)

∂θ∂θ′ | p−→ 0 and 1
n |

∂2 lnLn(θ̄n)

∂θ∂θ′ − ∂2 lnLn(θ0)

∂θ∂θ′ | p−→ 0

separately and have the desired result. (For more details, refer to the proof of Theorem 3.2 in Lee
(2004)). Then, by Assumption 9, we obtain (− 1

n
∂2 lnLn(θ̄n)

∂θ∂θ′ )−1 − Σ−1
θ0,n

= op(1). As a result, we

finally have
√
n(θ̂cn − θ0)

d−→ N(0,Σ−1
θ0

Ωθ0Σ
−1
θ0

), where θ̂cn = θ̂n +Σ−1

θ̂,n
∆̃n(θ̂n). �

After deriving the asymptotic distribution of θ̂cn, finally we can investigate the asymptotic dis-
tribution of the group fixed effects α̂ = (α̂1, ..., α̂G)

′.

Theorem 3:
With Assumption 1-9, when G is fixed, mg grows with n, √

mg(α̂g − αg,0)
d−→ N(0, σ2

0) for
g = 1, ..., G. When mg is fixed, while G grows with n, the limiting distribution of α̂g doesn’t exist.
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Proof:
By first order condition of α of the original log-likelihood equation, we have α̂ = M−1

G H
′

Gũθ̂n
.

Then, using Sn(Λ)S
−1
n = In + (λ1,0 − λ1)Gn,1 + . . .+ (λK,0 − λK)Gn,K , we can get

ũθ̂n
= Sn(Λ̂n)Yn − Znφ̂n

= Sn(Λ̂n)[S
−1
n (Znφ0 +HGα0 + un)]− Znφ̂n

= Zn(φ0 − φ̂n) +HGα0 + un

+ (λ1,0 − λ̂1,n)Gn,1(Znφ0 +HGα0 + un)

+ . . . . . .

+ (λK,0 − λ̂K,n)Gn,K(Znφ0 +HGα0 + un)

Thus,

α̂− α0 = M−1
G H

′

G ·
[(
Gn,1(Znφ0 +HGα0), ..., Gn,K(Znφ0 +HGα0)

)
×


λ1,0 − λ̂1,n

...
λK,0 − λ̂K,n

φ0 − φ̂n


+
(
In −

K∑
k=1

(λk − λk,0)Gn,k

)
un

]

As proved in previous section, we have θ̂n − θ0 = Op(
1√
n
) and elements of

(
Gn,1(Znφ0 +

HGα0), ..., Gn,K(Znφ0 + HGα0)
)

are Op(1). Then, the dominant term of α̂ − α0 is M−1
G H

′

Gun,
which is equivalent to 

1
m1

∑m1

l=1 ul,1

...

...
1

mG

∑mG

l=1 ul,G


where mg is the number of individuals in group g, g = 1, . . . , G. So for each fixed effect, when mg

grows with n, √mg(α̂g−αg,0)
d−→ N(0, σ2

0) and they are independent from each other asymptotically.
However, when mg is fixed regardless of G, the limiting distribution of each fixed effect does not
exist. �
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4 Monte Carlo Simulations

4.1 Basic Settings

In this section, we run Monte Carlo simulations to investigate the finite sample performance of
the QMLE we proposed in Section 2. As we stated before, for computational convenience, Λ is
estimated by maximizing the concentrated likelihood function Q (Λ) showed by (12), and other
estimators can then be backed out by (9) ∼ (11).

To generate the model, we first simulate the networks among individuals which satisfy our as-
sumptions. In this simulation exercise, we consider the situation when there exist two different
networks among agents, and both of them are row-stochastic nearest neighbor spatial weight ma-
trices. For such a matrix Wn = (wij,n) , we use the procedure provided by LeSage’s econometrics
toolbox7:

1. Generate two random vectors of coordinates as the geographic location for each observation;

2. Find l nearest neighbors for each observation according to their spatial distances and denote
the corresponding wij,n = 1, otherwise wij,n = 0;

3. Row-normalize Wn.

In our application, we consider two networks W1,n and W2,n with l1 and l2. The neighborhood
relationships are allowed to overlap between these two networks, i.e. an individual may be another
individual’s neighbor in both networks. For each simulation round, with different sample size, we
do 1,000 times replications with the same spatial weighting matrices which are randomly generated.

For heterogeneity source, we consider two different types of individuals and fix the ratio of the
two types as 3:2. For external regressors, x1 is the dummy variable for whether the individual
belongs to the first type, and x2 is a random draw from uniform distribution on [0, 1].

For group settings, we consider two different scenarios as the following:
Scenario 1: fixed number of groups with growing members, 10 groups with n/10 members in each
group
Scenario 2: fixed membership for each group with growing number of groups, 20 members in each
group with totally n/20 groups
For both scenarios, group fixed effects {αg} are set as random draws from uniform distribution on
[0, 1]. To compare the performance under different situations, we also consider two different settings
for network density and true parameter values:
Setting 1: l1 = 30, l2 = 20, λ1 = (−0.3, 0.7)

′
, λ2 = (0.5, 0.2)

′
, γ1 = (−3, 2, 4, 5)

′
, γ

′

2 = (−1, 2, 2, 3)
′
,

β = (2,−6)
′
, σ2 = 1

Setting 2: l1 = l2 = 10, λ1 = (0.6, 0.2)
′
, λ2 = (−0.3,−0.5)

′
, γ1 = (1,−2, 2, 3)

′
, γ

′

2 = (2,−2, 1, 3)
′
,

β = (−1, 3)
′
, σ2 = 4

7See https://www.spatial-econometrics.com
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We evaluate the performance under both scenarios and settings, with three different sample sizes:
n = 200, n = 500 and n = 1000. Additionally, besides normal distribution, we also evaluate the per-
formance under two other residual distributions: continuous uniform distribution U

[
− 2√

3
σ, 2√

3
σ
]

and rescaled Gamma distribution 1√
3
σ [Γ (2.25, 2)− 4.5].

4.2 Simulation Results for Scenario 1

Table 1-7 show the performance for Scenario 1 when the number of groups is fixed. Table 1 reports
both the raw estimators and bias corrected estimators for peer effects, which are directly estimated
by the concentrated likelihood approach. For both parameter settings, the average biases are
reduced for all the parameters, and the performance is robust for different residual distributions.

Table 2-7 report the performance for all the parameters except the group fixed effects. For all
the three residual distributions and parameter settings, the average biases shrink quickly as sample
size grows. Meanwhile, the medians of estimates also get closer to the true value. When sample
size is n = 500, the average biases are reduced to be less than 10%.

For standard deviation, the performance is not as good as those of the means and medians.
Although it shrinks with the sample size for all the parameters, when some contextual effects and
effects from own characteristics are relatively small (Setting 2), the standard deviation of their
QMLE may still be large. Thus, our QML method is more suitable to be applied in large samples,
with at least 1000 observations.
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Table 2: Performance of QMLE with Normal Residuals for Scenario 1 (bias corrected, Setting 1)
l1 = 30, l2 = 20, θ0 = (−.3, .7, .5, .2,−3, 2, 4, 5,−1, 2, 2, 3, 2,−6, 1)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean -.3080 .6459 .4771 .1703 -2.9758 1.9143 3.8506 5.0424
std .2957 .4017 .1491 .1881 1.2585 1.5682 1.5864 1.6049
med -.3020 .6510 .4909 .1765 -2.9557 1.9555 3.8881 4.9873
q0.25 -.5007 .3779 .3837 .0508 -3.7691 .7920 2.7981 3.9536
q0.75 -.1015 .9140 .5818 .2984 -2.1461 2.9898 4.8867 6.1083

n = 500

mean -.3040 .6920 .4910 .1997 -3.0383 2.0239 3.9443 5.0382
std .1349 .1589 .0967 .1098 .7953 .9020 .8846 1.0497
med -.3036 .7029 .4906 .1993 -3.0354 2.0211 3.9499 5.0599
q0.25 -.3924 .5846 .4286 .1268 -3.5645 1.4210 3.3669 4.3447
q0.75 -.2059 .8053 .5566 .2797 -2.5127 2.6234 4.5561 5.7033

n = 1000

mean -.3022 .6966 .4983 .1986 -2.9753 1.9833 3.9843 4.9877
std .0886 .1099 .0582 .0808 .5523 .7596 .6791 .9158
med -.3018 .6957 .4983 .1988 -2.9695 1.9802 3.9857 5.0434
q0.25 -.3613 .6275 .4585 .1439 -3.3755 1.4531 3.5110 4.3568
q0.75 -.2501 .7764 .5396 .2543 -2.6044 2.4987 4.4135 5.6429

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean -1.1083 1.9369 1.9204 2.9682 2.0232 -5.9842 .8782
std .9235 1.2154 1.4181 1.8862 1.2497 .2650 .0894
med -1.0742 1.9447 1.9091 2.9782 2.0683 -5.9780 .8746
q0.25 -1.6870 1.1365 1.1545 1.7642 1.1596 -6.1538 .8184
q0.75 -.4639 2.6869 2.7309 4.2078 2.8634 -5.8063 .9381

n = 500

mean -1.0377 1.9657 1.9665 3.0841 2.0577 -5.9967 .9528
std .5818 .7574 .6481 .8949 .7765 .1503 .0626
med -1.0185 2.0049 1.9772 3.0837 2.0548 -5.9988 .9525
q0.25 -1.4632 1.4632 1.5259 2.4757 1.5559 -6.0957 .9105
q0.75 2.4434 2.4434 2.4412 3.6533 2.6080 -5.8910 .9941

n = 1000

mean -1.0083 2.0056 2.0080 3.0047 1.9925 -5.9955 .9766
std .4401 .5674 .5028 .6253 .6047 .1053 .0441
med -.9922 2.0127 2.0177 3.0044 1.9642 -5.9955 .9782
q0.25 -1.3015 1.6439 1.6440 2.5951 1.5913 -6.0671 .9467
q0.75 -.7036 2.3713 2.3512 3.4209 2.4010 -5.9294 1.0059
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Table 3: Performance of QMLE with Uniform Residuals for Scenario 1 (bias corrected, Setting 1)
l1 = 30, l2 = 20, θ0 = (−.3, .7, .5, .2,−3, 2, 4, 5,−1, 2, 2, 3, 2,−6, 1)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean -.3403 .6954 .4673 .1694 -.3090 1.9757 4.0018 4.9854
std .2852 .3002 .1855 .2023 1.3265 1.8731 1.6860 2.5538
med -.3356 .7039 .4848 .1751 -3.0027 1.9857 4.0265 4.8883
q0.25 -.5234 .4987 .3439 .0332 -3.9363 .6649 2.9022 3.1526
q0.75 -.1416 .8987 .5995 .3097 -2.1225 3.2871 5.1690 6.7563

n = 500

mean -.3070 .7003 .4932 .1899 -3.0021 2.0117 3.9994 4.9259
std .1451 .1728 .0827 .1038 .7632 .9347 .9534 1.1365
med -.3009 .6974 .4942 .1962 -3.0021 2.0189 3.9870 4.9203
q0.25 -.4047 .5885 .4410 .1234 -3.4981 1.3816 3.3733 4.2215
q0.75 -.2091 .8166 .5532 .2604 -2.4786 2.6350 4.5876 5.7306

n = 1000

mean -.3097 .6967 .4948 .1962 -3.0273 2.0389 3.9692 5.0167
std .1015 .1208 .0607 .0769 .5240 .7307 .6137 .7826
med -.3092 .6951 .4973 .1975 -3.0454 2.0270 3.9514 5.0651
q0.25 -.3833 .6152 .4538 .1428 -3.3810 1.5487 3.5340 4.4457
q0.75 -.2400 .7773 .5374 .2461 -2.6530 2.5602 4.3794 5.5571

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean -1.0306 1.9244 1.9326 2.9914 2.0353 -5.9910 .8781
std 1.0376 1.3274 1.2179 1.5805 1.3946 .2483 .0644
med -.9888 1.9456 1.9478 2.9400 2.0275 -5.9943 .8763
q0.25 -1.7167 1.0285 1.1579 1.9259 1.1003 -6.1571 .8319
q0.75 -.3277 2.8675 2.7664 4.1391 2.9271 -5.8301 .9233

n = 500

mean -.9898 2.0003 1.9831 2.9619 1.9409 -6.0014 .9538
std .5644 .7790 .6859 .9743 .8391 .1496 .0403
med -1.0050 2.0359 1.9642 2.9753 1.9610 -6.0063 .9539
q0.25 -1.3781 1.4977 1.5482 2.3199 1.3665 -6.1014 .9270
q0.75 -.6142 2.5189 2.4179 3.6396 2.4753 -5.9040 .9813

n = 1000

mean -1.0280 2.0279 1.9935 2.9929 1.9949 -5.9974 .9758
std .4156 .5659 .5645 .7012 .5596 .1122 .0282
med -1.0335 2.0565 1.9905 3.0144 2.0141 -6.0006 .9761
q0.25 -1.3233 1.6561 1.6056 2.5321 1.6248 -6.0694 .9561
q0.75 -.7428 2.3997 2.3697 3.4702 2.3765 5.9226 .9942
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Table 4: Performance of QMLE with Gamma Residuals for Scenario 1 (bias corrected, Setting 1)
l1 = 30, l2 = 20, θ0 = (−.3, .7, .5, .2,−3, 2, 4, 5,−1, 2, 2, 3, 2,−6, 1)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean -.3075 .6952 .4836 .1743 -2.9908 1.9894 4.0652 4.8682
std .2671 .3443 .1580 .2145 1.3715 1.5945 1.6821 2.0365
med -.3010 .7132 .4855 .1777 -2.9647 2.0512 4.1263 4.8639
q0.25 -.4800 .4855 .3786 .0391 -3.9594 .9993 2.9885 3.5777
q0.75 -.1141 .9156 .5868 .3207 -2.0820 3.0516 5.1341 6.2370

n = 500

mean -.3100 .6866 .4836 .1847 -3.0138 2.0017 3.9517 5.0570
std .1504 .1840 .0964 .1205 .7566 .9838 .9354 1.1931
med -.3081 .6905 .4886 .1867 -3.0019 1.9717 3.9396 5.0362
q0.25 -.4030 .5651 .4244 .1033 -3.5148 1.3237 3.3266 4.2818
q0.75 -.2060 .8070 .5496 .2638 -2.5001 2.6913 4.6060 5.8178

n = 1000

mean -.3051 .6983 .4957 .1943 -3.0355 2.0437 4.0309 4.9834
std .0928 .1102 .0597 .0745 .4759 .6615 .5683 .7448
med -.3043 .6990 .4971 .1943 -3.0297 2.0091 4.0128 4.9968
q0.25 -.3665 .6215 .4558 .1475 -3.3469 1.6036 3.6295 4.4954
q0.75 -.2421 .7777 .5367 .2458 -2.7246 2.5025 4.4031 5.4708

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean -1.0529 1.9574 1.9239 2.9911 1.9878 -5.9944 .8693
std 1.0957 1.2094 1.4193 1.6482 1.4973 .2728 .1327
med -1.0202 1.9566 1.9201 3.0489 1.9423 -5.9969 .8592
q0.25 -1.7757 1.1504 .9904 1.9369 .9936 -6.1744 .7761
q0.75 -.3524 2.8310 2.8918 4.1072 2.9933 -5.8161 .9512

n = 500

mean -1.0476 1.9735 1.9457 3.0069 2.0142 -6.0037 .9520
std .6346 .8030 .7962 1.0089 .8651 .1534 .0952
med -1.0349 1.9682 1.9087 3.0177 2.0034 -6.0014 .9520
q0.25 -1.4838 1.4230 1.3897 2.3471 1.4522 -6.1086 .8854
q0.75 -.6007 2.5177 2.4839 3.6681 2.5790 -5.8948 1.0124

n = 1000

mean -1.0144 1.9875 1.9765 3.0149 2.0126 -5.9957 .9804
std .4233 .5106 .4627 .6549 .5832 .1090 .0688
med -1.0022 1.9744 1.9739 3.0470 2.0119 -5.9987 .9786
q0.25 -1.2997 1.6381 1.6769 2.5719 1.6270 -6.0701 .9314
q0.75 -.7287 2.3616 2.2893 2.4217 2.4217 -5.9201 1.0270
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Table 5: Performance of QMLE with Normal Residuals for Scenario 1 (bias corrected, Setting 2)
l1 = l2 = 10, θ0 = (.6, .2,−.3,−.5, 1,−2, 2, 3, 2,−2, 1, 3,−1, 3, 4)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean .6055 .1933 -.2360 -.4010 1.0165 -1.9192 1.9525 3.1740
std .1971 .2664 .2710 .3605 1.6550 2.4120 2.2392 3.5716
med .6207 .2048 -.2334 -.4071 1.1091 -1.7020 2.0673 3.1570
q0.25 .4855 .0373 -.4178 -.6370 -.0923 -3.5573 .5263 .7570
q0.75 .7472 .3832 -.0466 -.1642 2.1371 -.3455 3.4536 5.5290

n = 500

mean .5987 .1997 -.2877 -.4613 1.0004 -1.9885 1.9989 2.9464
std .1036 .1332 .1609 .2197 .9191 1.2391 1.1534 1.6120
med .6051 .2024 -.2895 -.4596 1.0067 -2.0598 2.0111 2.9712
q0.25 .5344 .1199 -.3971 -.6018 .3644 -2.8669 1.1939 1.9045
q0.75 .6654 .2849 -.1846 -.3120 1.6551 -1.1459 2.7746 3.9288

n = 1000

mean .5975 .2018 -.2871 -.4971 .9630 -1.9671 1.9932 3.0039
std .0731 .0915 .1107 .1392 .6612 .9867 .7927 1.2081
med .6048 .2035 -.2892 -.5006 1.0005 -2.0233 2.0048 3.0036
q0.25 .5503 .1421 -.3610 -.5878 .5260 -2.6514 1.4266 2.1789
q0.75 .6445 .2654 -.2130 -.4055 1.4271 -1.3380 2.4949 3.8154

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean 2.1339 -2.1068 1.3460 2.6500 -.9285 3.0241 3.5180
std 1.6491 2.3739 2.0216 2.1542 4.0403 .5554 .3756
med 2.1393 -2.0926 1.3579 2.5100 -.8684 3.0217 3.4931
q0.25 1.0348 -3.7728 .0100 .5121 -3.8310 2.6211 3.2570
q0.75 3.2257 -.4490 2.6533 4.8468 1.7462 3.4169 3.7548

n = 500

mean 1.9953 -2.0778 1.0887 2.9052 -.8939 3.0078 3.8014
std .8764 1.0856 1.2502 1.4767 2.1761 .3191 .2439
med 1.9904 -2.0645 1.1071 2.9271 -.7851 3.0106 3.8116
q0.25 1.4083 -2.7925 .2590 1.9178 -2.2734 2.7809 3.6370
q0.75 2.6191 -1.3324 1.9467 3.8772 .4917 3.2277 3.9652

n = 1000

mean 2.0479 -2.0800 .9966 3.0007 -1.0019 3.0245 3.8998
std .5926 1.0020 .7977 1.2091 1.4969 .2182 .1749
med 2.0567 -2.1162 1.0231 3.0047 -1.0221 3.0181 3.8893
q0.25 1.6522 -2.7632 .4297 2.1531 -1.9770 2.8800 3.7825
q0.75 2.4511 -1.3985 1.5245 2.7923 .0528 3.1725 4.0246
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Table 6: Performance of QMLE with Uniform Residuals for Scenario 1 (bias corrected, Setting 2)
l1 = l2 = 10, θ0 = (.6, .2,−.3,−.5, 1,−2, 2, 3, 2,−2, 1, 3,−1, 3, 4)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean .5940 .2023 -.2774 -.4422 .9060 -1.9537 1.9988 3.0043
std .1919 .2390 .2753 .3090 1.4634 2.4911 2.0735 3.1673
med .5991 .2126 -.2798 -.4282 .9808 -1.9174 2.0583 2.9532
q0.25 .4623 .0490 -.4616 -.6539 -.0158 -3.6430 .5194 .7385
q0.75 .7291 .3706 -.0878 -.2323 1.9149 -.4283 3.4797 5.0076

n = 500

mean .6001 .1975 -.2749 -.4602 1.0107 -2.0010 1.9875 2.9693
std .1072 .1352 .1625 .2091 .9505 1.3254 .9751 1.6658
med .6059 .2052 -.2763 -.4743 1.0436 -1.9952 1.9999 2.8898
q0.25 .5251 .1117 -.3830 -.6071 .3560 -2.9189 1.3826 1.8382
q0.75 .6799 .2896 -.1662 -.3275 1.6529 -1.1046 2.7017 4.1258

n = 1000

mean .5983 .2024 -.2936 -.4783 1.0191 -1.9360 2.0025 2.9605
std .0730 .1000 .1103 .1446 .6952 .9972 .8332 1.2086
med .6051 .2067 -.2913 -.4833 1.0289 -1.9486 1.9684 2.9406
q0.25 .5515 .1387 -.3700 -.5753 .5471 -2.6199 1.4337 2.1042
q0.75 .6498 .2769 -.2165 -.3788 1.4931 -1.2480 2.5832 3.8171

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean 2.0697 -1.9757 1.0925 2.8696 -.9115 3.0058 3.5236
std 1.3153 2.6258 1.5687 2.9268 3.2401 .4979 .2575
med 2.1139 -1.9821 1.1070 2.8259 -.9511 3.0173 3.5149
q0.25 1.2128 -3.7532 .0063 .9085 -3.1388 2.6661 3.3481
q0.75 2.9717 -.2329 2.1601 4.8785 1.2507 3.3469 3.7068

n = 500

mean 2.0936 -2.0294 1.0561 2.9067 -1.0915 2.9924 3.8100
std .9019 1.5227 .8873 1.8312 1.9261 .3160 .1647
med 2.0960 -2.0051 1.0769 2.8952 -1.0802 2.9883 3.8165
q0.25 1.4939 -3.0585 .4490 1.6711 -2.4025 2.7856 3.6957
q0.75 2.7054 -1.0334 1.6542 4.0821 .1046 3.2046 3.9191

n = 1000

mean 1.9978 -2.0195 1.0353 2.9057 -1.0271 3.0063 3.9004
std .6096 .8817 .8134 1.1170 1.5558 .2186 .1210
med 1.9926 -2.0505 1.0517 2.8754 -1.0318 3.0140 3.9010
q0.25 1.5936 -2.6235 .5042 2.0953 -2.0377 2.8558 3.8181
q0.75 2.4007 -1.4208 1.6041 3.6695 -.0076 3.1603 3.9807
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Table 7: Performance of QMLE with Gamma Residuals for Scenario 1 (bias corrected, Setting 2)
l1 = l2 = 10, θ0 = (.6, .2,−.3,−.5, 1,−2, 2, 3, 2,−2, 1, 3,−1, 3, 4)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean .5910 .2063 -.2551 -.4463 .9686 -1.9384 1.9506 2.7567
std .1851 .2359 .2723 .3561 1.4045 2.2364 1.8998 2.7472
med .6053 .2205 -.2449 -.4348 1.0151 -2.0041 1.9439 2.5536
q0.25 .4796 .0579 -.4416 -.6873 .0616 -3.4500 .7567 .8920
q0.75 .7169 .3688 -.0696 -.2012 1.9320 -.4094 3.1793 4.5093

n = 500

mean .5992 .2098 -.2810 -.4638 1.0250 -1.9725 2.0355 2.9699
std .1056 .1389 .1627 .1921 .9057 1.5080 1.1406 1.7682
med .6062 .2172 -.2870 -.4579 1.0302 -1.9421 2.0559 2.9248
q0.25 .5296 .1201 -.3873 -.5937 .4023 -2.9942 1.2420 1.7857
q0.75 .6730 .3027 -.1692 -.3324 1.6549 -.9227 2.8270 4.1612

n = 1000

mean .5980 .2086 -.2935 -.4873 1.0134 -1.9423 2.0446 2.9641
std .0671 .0931 .1065 .1365 .6477 .9949 .8373 1.1726
med .6016 .2097 -.2898 -.4873 1.0239 -1.8973 2.0674 2.9955
q0.25 .5566 .1490 -.3647 -.5856 .5872 -2.6284 1.4925 2.1381
q0.75 .6441 .2720 -.2190 -.3979 1.4454 -1.2744 2.6090 3.7976

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean 2.0378 -2.2064 1.1276 2.8142 -1.0054 3.0184 3.5441
std 1.6758 2.2132 1.8930 2.4518 4.1456 .4986 .5454
med 2.0250 -2.3017 1.1220 2.7623 -.9857 3.0098 3.4792
q0.25 .9669 -3.6629 -.1304 1.2000 -3.8386 2.6743 3.1895
q0.75 3.1943 -.7494 2.4922 4.3763 1.6749 3.3660 3.8594

n = 500

mean 2.0571 -2.0698 1.1260 2.9358 -.8917 3.0113 3.7960
std .9223 1.5855 1.0089 1.8054 2.4528 .3194 .3821
med 2.0551 -2.0770 1.1674 2.9192 -.8977 3.0199 3.7764
q0.25 1.4233 -3.1660 .4609 1.7033 -2.5276 2.7916 3.5149
q0.75 2.7189 -.9551 1.8025 4.1032 .6982 3.2219 4.0336

n = 1000

mean 2.0450 -2.0383 1.0161 2.9344 -1.0167 3.0192 3.8805
std .5758 .9023 .7290 1.1407 1.4420 .2207 .2561
med 2.0635 -2.0375 1.0138 2.9162 -1.0762 3.0264 3.8845
q0.25 1.6454 -2.6233 .5537 2.1555 -1.9912 2.8743 3.7105
q0.75 2.4192 -1.4539 1.5216 3.6758 -.0044 3.1690 4.0629

4.3 Simulation Results for Scenario 2

Table 8-14 show the performance for Scenario 2 when the membership of each group is fixed.
Table 8 reports both the raw estimates and bias corrected estimates for peer effects, which are
directly estimated by the concentrated likelihood approach. Unlike the results showed in Table 1
for Scenario 1, the performance of our bias correction method seems to depend on the value of true
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parameters and the networks. For Setting 1 with more dense networks, the bias corrected QMLE
dominate the raw estimates on average bias level for all the peer effects. However, for Setting 2
with relatively more sparse networks, although the performance of the bias corrected estimators
improves as sample size gets larger, for λ2,1 and λ2,2, the performance does not dominate the raw
estimates. The raw estimates overestimate the peer effects through W2,n in general and the bias
correction method tends to over shoot and results in underestimated QMLE. But in general, when
sample size is large enough (n ≥ 1000), the average bias level is less than 10% which is acceptable.

Table 9-14 report the performance for all the parameters except group fixed effects. The perfor-
mance for the mean, median and standard deviations are similar to those under Scenario 1. Average
biases for λ2,1 , λ2,2 and σ2 are slightly larger for Setting 2, but are still acceptable. For similar
reasons, we suggest to use our method when one has a relatively large sample size in order to make
more precise inference for contextual effects.
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Table 9: Performance of QMLE with Normal Residuals for Scenario 2 (bias corrected, Setting 1)
l1 = 30, l2 = 20, θ0 = (−.3, .7, .5, .2,−3, 2, 4, 5,−1, 2, 2, 3, 2,−6, 1)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean -.3151 .6843 .4827 .1710 -3.0693 2.1132 3.9907 5.0279
std .2039 .2257 .1387 .1714 1.4607 1.7738 1.3169 1.6850
med -.3080 .6845 .4925 .1761 -3.0318 2.0239 4.0070 4.9817
q0.25 -.4440 .5346 .3902 .0591 -4.0569 .7870 3.0893 3.9415
q0.75 -.1739 .8410 .5746 .2909 -2.0886 3.3251 4.8765 6.1599

n = 500

mean -.3006 .6981 .4885 .1925 -2.9721 2.0032 3.9948 5.0405
std .1521 .1520 .0972 .1114 .7803 1.0120 .9241 1.2421
med -.3014 .7004 .4890 .1941 -2.9727 2.0033 4.0262 5.0311
q0.25 -.3990 .5982 .4252 .1207 -3.4898 1.3241 3.3486 4.1477
q0.75 -.1973 .7964 .5544 .2664 -2.4734 2.7361 4.6130 5.9357

n = 1000

mean -.2966 .6936 .4960 .1908 -2.9779 2.0110 3.9447 5.0328
std .1052 .1327 .0676 .0884 .5724 .7342 .7154 .9152
med -.2947 .6956 .4998 .1911 -2.9557 2.0294 3.9571 5.0022
q0.25 -.3682 .6054 .4550 .1301 -3.3517 1.5196 3.4627 4.4230
q0.75 -.2275 .7846 .5402 .2507 -2.5899 2.4837 4.4090 5.6288

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean -1.0615 1.9640 1.9956 2.9940 2.0229 -6.0010 .8820
std .8970 1.2285 .8485 1.5082 1.3464 .2648 .0966
med -1.0520 1.9146 2.0095 2.9213 2.0457 -5.9976 .8782
q0.25 -1.6526 1.1060 1.4127 1.8896 1.0685 -6.1794 .8114
q0.75 -.4245 2.7959 2.5833 4.0192 2.9467 -5.8204 .9466

n = 500

mean -1.0095 1.9882 1.9614 3.0118 2.0001 -5.9954 .9207
std .6341 .8600 .7712 .9365 .8246 .1641 .0588
med -.9945 1.9868 1.9703 3.0565 1.9744 -5.9920 .9202
q0.25 -1.4225 1.4287 1.4414 2.3867 1.4553 -6.1071 .8767
q0.75 -.5814 2.5940 2.4846 3.6351 2.5571 -5.8879 .9617

n = 1000

mean -1.0167 2.0156 1.9820 2.9677 1.9499 -5.9904 .9353
std .3982 .5409 .5117 .7276 .5803 .1121 .0445
med -1.0056 2.0174 2.0115 2.9729 1.9580 -5.9873 .9341
q0.25 -1.2836 1.6293 1.6502 2.4512 1.5572 -6.0650 .9062
q0.75 -.7359 2.3630 2.3221 3.4409 2.3424 -5.9130 .9638
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Table 10: Performance of QMLE with Uniform Residuals for Scenario 2 (bias corrected, Setting 1)
l1 = 30, l2 = 20, θ0 = (−.3, .7, .5, .2,−3, 2, 4, 5,−1, 2, 2, 3, 2,−6, 1)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean -.3254 .6879 .4817 .1628 -3.0851 2.1024 4.0201 4.9982
std .1816 .2617 .1696 .2345 1.2399 1.5377 1.4947 2.1480
med -.3261 .6897 .4903 .1747 -3.1151 2.1279 4.0263 5.0040
q0.25 -.4480 .5125 .3752 .0043 -3.9277 1.0068 2.9560 3.5721
q0.75 -.1961 .8711 .5987 .3292 -2.2307 3.1203 5.0106 6.4308

n = 500

mean -.3074 .6933 .4957 .1921 -2.9893 1.9857 3.9987 5.0566
std .1351 .1655 .0872 .1108 .9008 1.1180 1.0129 1.4476
med -.3011 .6953 .4970 .1911 -2.9710 2.0070 4.0078 5.0560
q0.25 -.3952 .5797 .4370 .1163 -3.6123 1.2297 3.3149 4.1449
q0.75 -.2160 .8054 .5589 .2680 -2.3574 2.7627 4.6947 5.9601

n = 1000

mean -.3059 .7038 .4981 .1969 -3.0033 1.9945 3.9803 4.9875
std .0866 .1120 .0622 .0723 .5542 .7569 .7392 .9681
med -.3041 .7068 .4990 .1993 -2.9663 1.9888 3.9637 5.0005
q0.25 -.3654 .6288 .4578 .1500 -3.3726 1.4564 3.4691 4.3098
q0.75 -.2471 .7786 .5398 .2472 -2.6232 2.4851 4.4745 5.6174

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean -1.0511 2.0617 1.9561 2.9572 1.9508 -6.0059 .8802
std 1.0013 1.2686 1.1349 1.7722 1.3544 .2563 .0662
med -1.0399 2.0570 1.9570 2.9776 1.9225 -5.9997 .8810
q0.25 -1.7364 1.2321 1.2038 1.8087 1.0343 -6.1890 .8351
q0.75 -.3688 2.8798 2.7451 4.0525 2.9005 -5.8296 .9246

n = 500

mean -1.0361 1.9941 1.9730 3.0287 2.0419 -6.0033 .9215
std .5616 .7601 .7396 .9239 .8322 .1661 .0399
med -1.0397 1.9789 1.9737 3.0423 2.0987 -6.0000 .9209
q0.25 -1.4161 1.4722 1.4701 2.4025 1.4848 -6.1163 .8940
q0.75 -.6607 2.5195 2.4519 3.6562 2.6204 -5.8976 .9499

n = 1000

mean -1.0081 1.9820 1.9861 2.9890 1.9968 -6.0046 .9352
std .4712 .5695 .5138 .7095 .5848 .1099 .0285
med -.9993 1.9677 2.0107 2.9860 1.9873 -6.0079 .9352
q0.25 -1.3424 1.5973 1.6465 2.4930 1.5932 -6.0801 .9150
q0.75 -.6710 2.3796 2.3280 3.4916 2.4194 5.9321 .9547
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Table 11: Performance of QMLE with Gamma Residuals for Scenario 2 (bias corrected, Setting 1)
l1 = 30, l2 = 20, θ0 = (−.3, .7, .5, .2,−3, 2, 4, 5,−1, 2, 2, 3, 2,−6, 1)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean -.3174 .6647 .4718 .1829 -3.0175 2.0976 4.0353 4.9178
std .2532 .2775 .1530 .1837 1.4360 2.0822 1.9943 2.6931
med -.3153 .6682 .4757 .1825 -2.9648 2.0860 3.9564 4.9086
q0.25 -.4761 .4883 .3699 .0628 -3.9524 .6993 2.6779 3.0477
q0.75 -.1478 .8475 .5805 .3023 -2.0840 3.5060 5.3434 6.7846

n = 500

mean -.3077 .6950 .4899 .1934 -2.9904 1.9898 3.9853 4.9902
std .1268 .1481 .0847 .1127 .6133 .8885 .7666 1.0967
med -.3055 .6946 .4923 .1957 -2.9779 1.9846 3.9741 4.9906
q0.25 -.3857 .5924 .4363 .1242 -3.4228 1.3839 3.4335 4.2622
q0.75 -.2260 .7996 .5448 .2633 -2.5701 2.6118 4.5514 5.7389

n = 1000

mean -.3011 .6988 .4982 .1985 -3.0243 2.0235 4.0153 4.9751
std .0933 .1278 .0614 .0836 .5596 .7279 .7391 1.0403
med -.2957 .7057 .5004 .1992 -3.0140 2.0153 4.0321 4.9961
q0.25 -.3642 .6051 .4562 .1430 -3.4106 1.5079 3.5191 4.2496
q0.75 -.2416 .7899 .5407 .2567 -2.6702 2.5181 4.5318 5.7034

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean -1.0579 2.0747 1.9862 2.9419 1.9294 -5.9880 .8831
std 1.0629 1.3194 1.3342 1.5989 1.3943 .2674 .1366
med -.9958 2.0886 1.9771 2.9480 1.9469 -5.9906 .8691
q0.25 -1.7923 1.2108 1.0705 1.9000 1.0439 -6.1648 .7862
q0.75 -.2862 2.9776 2.8443 4.0161 2.9098 -5.8078 .9683

n = 500

mean -1.0354 2.0157 1.9515 2.9908 1.8734 -5.9960 .9204
std .5781 .9326 .7873 1.0959 .8894 .1583 .0882
med -1.0386 2.0542 1.9444 3.0023 1.9496 -5.9980 .9177
q0.25 -1.4274 1.3648 1.4123 2.2204 1.3456 -6.1061 .8584
q0.75 -.6614 2.6789 2.5416 3.7369 2.5787 -5.8885 .9752

n = 1000

mean -.9985 1.9933 2.0047 3.0066 2.0078 -6.0009 .9356
std .4419 .5830 .5445 .7104 .6067 .1111 .0659
med -.9724 2.0060 1.9920 2.9843 2.0255 -6.0050 .9349
q0.25 -1.2928 1.5890 1.6288 2.5405 1.5967 -6.0726 .8878
q0.75 -.6818 2.3818 2.3848 3.4964 2.3909 -5.9261 .9769
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Table 12: Performance of QMLE with Normal Residuals for Scenario 2 (bias corrected, Setting 2)
l1 = l2 = 10, θ0 = (.6, .2,−.3,−.5, 1,−2, 2, 3, 2,−2, 1, 3,−1, 3, 4)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean .5839 .2014 -.2626 -.4531 .9176 -1.8879 2.0046 3.0055
std .1649 .2112 .2441 .2833 1.4518 2.1314 1.7818 2.5138
med .5956 .2155 -.2525 -.4526 1.0098 -2.0374 1.9667 2.9081
q0.25 .4813 .0736 -.4183 -.6467 -.0316 -3.2992 .9077 1.2318
q0.75 .6973 .3483 -.0997 -.2486 1.9439 -.4596 3.2523 4.6239

n = 500

mean .5993 .2079 -.2687 -.4692 .9915 -1.9532 2.0166 2.9959
std .0950 .1471 .1493 .2120 .9280 1.3854 1.3247 2.1520
med .6048 .2146 -.2702 -.4721 .9989 -2.0168 3.0257 2.1554
q0.25 .5389 .1052 -.3690 -.6115 .4024 -2.9384 1.1157 1.5734
q0.75 .6666 .3133 -.1682 -.3225 1.5992 -1.0275 2.9226 4.4140

n = 1000

mean .6027 .2087 -.2780 -.4767 .9740 -2.0167 1.9968 2.9928
std .0782 .1037 .1122 .1386 .6785 .9684 .7681 1.2115
med .6060 .2096 -.2829 -.4788 .9718 -2.0145 2.0075 2.9608
q0.25 .5481 .1375 -.3562 -.5695 .5125 -2.7283 1.5058 2.1495
q0.75 .6576 .2782 -.2014 -.3588 1.4376 -1.3506 2.5100 3.8102

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean 2.1086 -2.0787 1.1773 2.8766 -.9089 2.9814 3.5341
std 1.3879 2.2844 1.9446 2.5703 3.1769 .4780 .3794
med 2.1809 -2.1548 1.1897 2.8986 -.7939 2.9691 3.5167
q0.25 1.2124 -3.6398 -.1450 1.1396 -3.0565 2.6807 3.2615
q0.75 3.0897 -.5616 2.4986 4.5463 1.1900 3.3078 3.7708

n = 500

mean 2.1264 -2.0933 1.0767 2.9758 -.9903 2.9999 3.6865
std .8471 1.3049 1.2596 1.8329 2.5311 .3243 .2488
med 2.1554 -2.0905 1.0866 2.9797 -.9170 3.0006 3.6760
q0.25 1.5588 -2.9378 .2145 1.6858 -2.6178 2.7849 3.5237
q0.75 2.6735 -1.2532 1.9409 4.2828 .6884 3.2282 3.8502

n = 1000

mean 2.0817 -2.0581 1.0909 2.9012 -.9421 3.0189 3.7392
std .6732 .9602 .6879 1.1371 1.6235 .2333 .1728
med 2.0581 -2.0712 1.0823 2.9266 -.9985 3.0175 3.7380
q0.25 1.6463 -2.7488 .6160 2.1385 -1.9822 2.8619 3.6284
q0.75 2.5329 -1.3980 1.5791 3.6783 .1520 3.1743 3.8574
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Table 13: Performance of QMLE with Uniform Residuals for Scenario 2 (bias corrected, Setting 2)
l1 = l2 = 10, θ0 = (.6, .2,−.3,−.5, 1,−2, 2, 3, 2,−2, 1, 3,−1, 3, 4)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean .5918 .1901 -.2656 -.4581 .9096 -1.8560 1.9252 2.9467
std .1939 .2203 .2493 .3018 2.0125 2.0426 1.5648 2.8164
med .6138 .2053 -.2659 -.4545 1.0069 -1.8783 1.9855 2.8763
q0.25 .4723 .0485 -.4241 -.6635 -.4099 -3.2707 .8723 1.0080
q0.75 .7245 .3452 -.0987 -.2619 2.2302 -.4492 3.0266 4.8484

n = 500

mean .6055 .2049 -.2699 -.4569 1.0162 -2.0153 2.0363 2.9826
std .1041 .1353 .1554 .2013 1.0225 1.2521 1.0534 1.7014
med .6145 .2113 -.2658 -.4544 1.0513 -2.0843 2.0610 2.9821
q0.25 .5343 .1186 -.3752 -.5920 .3305 -2.9219 1.3229 1.7808
q0.75 .6783 .2980 -.1693 -.3255 1.7033 -1.1488 2.7800 4.1709

n = 1000

mean .6040 .2070 -.2754 -.4761 .9980 -1.9462 2.0113 2.9882
std .0732 .0886 .1121 .1335 .6680 .9598 .8353 1.1072
med .6048 .2117 -.2725 -.4759 1.0286 -1.9664 2.0289 2.9668
q0.25 .5581 .1480 -.3477 -.5605 .5744 -2.5604 1.5063 2.2559
q0.75 .6573 .2680 -.2077 -.3890 1.4828 -1.3150 2.5600 3.7620

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean 2.0122 -2.0884 1.0700 2.9585 -1.0291 3.0012 3.5318
std 1.3354 2.1269 1.8286 2.7592 3.3595 .5628 .2630
med 2.0087 -2.0899 1.1152 3.0405 -1.1427 3.0164 3.5375
q0.25 1.1115 -3.4610 -.1045 1.0232 -3.3260 2.6356 3.3585
q0.75 2.9521 -.6803 2.2514 4.8781 1.2655 3.3684 3.7032

n = 500

mean 2.0577 -2.0978 1.1208 3.0365 -.8452 2.9978 3.6885
std 1.0072 1.1759 1.2495 1.4664 2.1465 .3324 .1672
med 2.0642 -2.0934 1.1626 3.0018 -.8014 3.0059 3.6856
q0.25 1.3344 -2.8947 .2730 2.0508 -2.2436 2.7716 3.5733
q0.75 2.7503 -1.3022 1.9953 4.0651 .6278 3.2191 3.8033

n = 1000

mean 2.0564 -2.0158 1.0569 2.9611 -1.0403 3.0046 3.7410
std .6232 1.0171 .7600 1.0586 1.4719 .2108 .1171
med 2.0835 -2.0045 1.0604 2.9908 -.9799 3.0009 3.7418
q0.25 1.6432 -2.7013 .5558 2.2173 -1.9985 2.8653 3.6597
q0.75 2.5136 -1.3223 1.5588 3.6685 -.0858 3.1488 3.8242
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Table 14: Performance of QMLE with Gamma Residuals for Scenario 2 (bias corrected, Setting 2)
l1 = l2 = 10, θ0 = (.6, .2,−.3,−.5, 1,−2, 2, 3, 2,−2, 1, 3,−1, 3, 4)

′

λ1,1 λ1,2 λ2,1 λ2,2 γ1,1,1 γ1,1,2 γ1,2,1 γ1,2,2

n = 200

mean .5887 .2031 -.3068 -.4000 1.0026 -2.0184 2.0154 3.1025
std .1962 .2450 .2846 .3591 1.6946 2.6374 2.1178 2.9387
med .5991 .2146 -.3013 -.3930 1.1019 -2.0195 2.0777 3.0808
q0.25 .4669 .0484 -.4923 -.6273 -.1585 -3.7195 .6858 1.1298
q0.75 .7281 .3724 -.1073 -.1652 2.2410 -.1708 3.4678 5.0518

n = 500

mean .5919 .2065 -.2614 -.4703 .9554 -1.9856 2.0380 3.0512
std .1054 .1409 .1601 .2111 1.0111 1.5751 1.1938 1.9597
med .5971 .2137 -.2544 -.4666 .9788 -1.9977 1.9983 3.0710
q0.25 .5258 .1116 -.3636 -.6164 .3148 -3.0373 1.2601 1.6701
q0.75 .6651 .3068 -.1573 -.3260 1.6291 -.9459 2.8206 4.3658

n = 1000

mean .6044 .2086 -.2799 -.4739 1.0038 -2.0431 2.0561 2.9433
std .0701 .0987 .1083 .1353 .6880 1.0303 .8973 1.2742
med .6089 .2127 -.2765 -.4744 1.0245 -2.0136 2.0900 2.9159
q0.25 .5600 .1443 -.3553 -.5636 .5625 -2.7358 1.4623 2.1296
q0.75 .6531 .2775 -.2078 -.3821 1.4722 -1.3509 2.7052 3.7960

γ2,1,1 γ2,1,2 γ2,2,1 γ2,2,2 β1 β2 σ2

n = 200

mean 2.0525 -2.0310 1.2970 2.6537 -.6421 3.0251 3.5102
std 1.6251 2.5823 1.7897 3.3350 3.4801 .5223 .5529
med 2.0889 -2.1437 1.4184 2.5535 -.5428 3.0395 3.4769
q0.25 1.0064 -3.7498 .1990 .2913 -3.0189 2.6804 3.1180
q0.75 3.2134 -.3665 2.5193 4.9282 1.7693 2.2746 3.8547

n = 500

mean 2.1256 -2.1281 1.0653 2.8783 -.9531 3.0108 3.6955
std .9334 1.4631 1.1594 1.8699 2.5994 .3453 .3627
med 2.1594 -2.1340 1.1200 2.8556 -.9285 3.0239 3.6757
q0.25 1.4968 -3.1059 .3177 1.6368 -2.7728 2.7700 3.4488
q0.75 2.7069 -1.1189 1.8640 4.0512 .7866 3.2473 3.9209

n = 1000

mean 2.0552 -2.0284 1.1169 2.9000 -.9425 3.0125 3.7392
std .6823 .9342 .8280 1.1654 1.6763 .2309 .2582
med 2.0785 -2.0161 1.1539 2.8661 -.8790 3.0050 3.7390
q0.25 1.5955 -2.6586 .5672 2.0942 -2.0247 2.8503 3.5658
q0.75 2.5368 -1.4423 1.6601 3.6846 .1855 3.1645 3.9023
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5 Application: Heterogeneous Peer Effects in Chinese Stu-
dent Academic Achievement

5.1 Data Description

The Chinese pre-university education system generally includes 6 years in primary school (Grade 1
to 6), 3 years in junior high school (Grade 7 to 9), and 3 years in senior high school (Grade 10 to 12)
before college. To understand the heterogeneous peer effects on students’ academic achievement,
we focus on the junior high school period, as required by the nine-year compulsory education in
China, this is the phase that students must complete in order to decide whether to continue their
education in senior high school. Upon the beginning of Grade 7, i.e., the first year of junior high
school, students are assigned to classrooms either randomly or non-randomly8 and then usually
stay in the same class throughout the 3 years of junior high school. Students are required to take
3 core subjects – Chinese, mathematics, and English – and a set of subsidiary subjects. A head
teacher, which can be one of the core-subject teachers, is responsible for students’ social lives and
providing feedback to students and their parents about academic performance and behavior.

We obtain data from China Education Panel Survey (CEPS), which is the first large-scale,
nationwide, and longitudinal survey dataset hosted by the National Survey Research Center (NSRC)
at Renmin University of China. So far, available data covers two waves in CEPS. In Wave I, CEPS
surveys 19,487 students from both Grade 7 and Grade 9 in 438 classrooms of 112 schools in 28
county-level units in mainland China in the 2013-2014 academic year. The survey contains 5
different questionnaires regarding topics about the students, parents, head teacher, subject teacher,
and school administrators. In Wave II, CEPS conducts a follow-up survey9 for 10,279 students
in Grade 8 in the 2014-2015 academic year, which was Grade 7 in Wave I10. The response rate is
91.9%. The missing observations are due to reasons such as transferring to another school, dropping
out, long-term sick leave, etc. Our targets are the 9,449 students who appear in both Wave I and
Wave II.

In this application, “group” refers to a grade level (Grade 8) in the same school as in Lin
(2010). However, instead of considering friendship networks, we construct networks based on class
assignment for two reasons. First, we are unable to identify a student’s peers as her friends since
the CEPS dataset only contains the number of a student’s best friends and the conditions, e.g., sex,
residence status, whether in the same school/class or not, of up to 5 best friends without providing
their names/ID information for matching. Second, due to the fact that generally students will be in
the same class during the 3-year junior high school stage, their education outcomes might be more
influenced by classmates rather than by their friends. In order to mitigate endogenous network

8Various methods for assigning students to classrooms are implemented in China. Nonrandom assignments can be
based on students’ entrance exam scores, residency, etc. To ensure equal and fair opportunities for all students during
their compulsory education years, randomized assignments are heavily promoted by the Ministry of Education, which
can rely on computer program that incorporate desired multidimensional information or drawing lots to determine
students’ placement.

9Follow-up surveys are annual as the sample adolescents matriculate throughout the junior-high stage and in the
1st, 3rd, 7th, 8th, 17th and 27th year after they graduate from junior-high. CEPS will last more than 30 years,
during which a new cohort of 7th graders will be started in a 10-year interval.

10There are 471 newcomers in Wave II, but we exclude them since we examine the peer effects of classmates on
the relative change/progress of academic outcomes as students proceed from Grade 7 to Grade 8.
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formation and potential selection problem, we focus on schools that use random assignments of
students to classrooms, which are determined by the similar criteria in Gong et al. (2018)11. We
then further drop observations with at least one missing midterm exam score for the three core
subjects, and the students who choose to transfer to other classes. The remaining sample consists
of 3,944 students across 97 classrooms in 56 schools. On average, there are 41 students in each class
with a minimum of 14, a maximum of 74 and a standard deviation 13.02. 15 schools have only one
classroom, and 41 schools have two classrooms included in the sample.

Table 15 displays our variable settings. The heterogeneous source for networks in this study is
students’ gender, which is excluded from students’ characteristics in order to avoid multicollinear-
ity. Outcome variables are students’ academic performance, which are measured by the Fall 2014
midterm scores of Chinese, Mathematics, English, and the total score by summing up the scores
of the three core subjects, as the cohort goes from Grade 7 to Grade 8 and stays in the same
classroom for more than one year. The raw data of scores for the 2014-2015 academic year has been
standardized for all classes within the same school with mean 70 and standard deviation 10 to have
comparable results. The variables of interest are students’ characteristics, such as whether they are
the only child, relative age (compared with the median level), ethnicity (whether belong to the Han
nationality or not), local residency status, whether they attended kindergarten, and their parents’
education levels. Those pre-determined variables barely change and are also used in Gong et al.
(2018) and Gong et al. (2019)12. Note that family income information, which might be an impor-
tant factor affecting students’ academic achievement, is not available in the CEPS dataset. But
parents’ education levels might capture most, if not all, of the effects of family income. The dataset
also contains head teachers’ information, such as their gender, teaching experience and whether
they are one of the core subject teachers, in both 2013-2014 and 2014-2015 academic years. The
2014 midterm exams usually occur in October, since class begins in September, we choose head
teachers’ characteristics from 2013-2014 academic year because they might have more impact on
the academic outcomes of the cohort as students have interactions with their head teachers for a
longer time period. We exclude school level information, such as school quality and teacher/student
ratio, due to our control of group fixed effects.

The summary statistics for the whole sample are provided in Table 16. In the whole sample, 48%
of the students are female with a standard deviation 0.50. Scores for Chinese, Math and English
have mean around 70 due to standardization and a standard deviation near 10. Average total score
is 74.13 with higher variation. For students’ characteristics, 48% are the only child in their family,
10% are minority students, 77% are local residents based on the Chinese Hukou System and 85%
attended kindergarten. Although our selected sample differs from the one employed in Gong et al.
(2018), the differences in those characteristics are modest, which implies sample selection bias is not

11The three conditions should be met: (i) the school principal reports that students are randomly assigned to
classrooms; (ii) the school doesn’t rearrange their classes for grade 8; (iii) all head teachers report that students are
not assigned by test scores.

12The only difference is that they also consider whether the students skipped/repeated a grade in primary school.
We find that corresponding data are quite noisy as a student might skip a grade for up to 9 times and repeat a grade
for up to 7 times. Besides, as we show below, relative age is a good approximate for these two variables. Moreover,
some (baseline) pre-noncognitive measures are included in their paper since they consider different outcome variables
which include students’ non-cognitive outcomes.
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Table 15: Variable Settings
Variables Settings

Heterogeneous source students’ gender “0” for “male student”; “1” for “female student”

Outcome variables

Chinese score standardized for all classes within
the same school with mean 70 and
standard deviation 10

Mathematics score
English score
total score

Student’s
characteristics

only child in family “0” for “no”; “1” for “yes”

relative age ± month, compared with sample median value
(February, 2001)

minority “0” for “no”; “1” for “yes”
local resident “0” for “no”; “1” for “yes”
attend kindergarten “0” for “no”; “1” for “yes”

parents’ education

“1” for “none”; “2” for “finished elementary
school”; “3” for “junior high school degree”; “4”
for “technical secondary school or technical
school degree”; “5” for “vocational high school
degree”; “6” for “senior high school degree”; “7”
for “junior college degree”; “8” for “bachelor’s
degree”; “9” for “master’s degree or higher”

Head teacher’s
characteristics

female head teacher “0” for “no”; “1” for “yes”
teaching experience year
whether teach Chinese/
Mathematics/English “0” for “no”; “1” for “yes”

a concern in this study. The average relative age (month) is 1.29 with a standard deviation 7.29.
Parents’ education level has a mean slightly above 4, which is between “technical secondary school
or technical school degree” and “vocational high school degree”, and standard deviations around 2.
For head teachers’ information, the sample covers 71% female head teachers, 29% head teachers
who teach Chinese, 32% head teachers who teach Math, and 25% head teachers who teach English.
The average teaching experience of head teachers is 14.39 year with a standard deviation 7.89.

Besides, to investigate the gender disparity in the variables, we further decompose our sample
into female and male students subgroups and the corresponding summary statistics are presented
in Table 17. For academic performance, female students outperform male students for the three
core subjects and also the total score, while male students’ scores have large variations than those
of female students. For students’ characteristics, there are more only child and higher relative age
for the male students compared with those of female students, while parents’ education levels are
slightly higher for female students. For head teachers’ characteristics, the difference for females
students and males students are small in terms of sample mean and standard deviations.
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Table 16: Summary Statistics for the Whole Sample
Mean SD Observations

Female student .48 .50 3,944
A. Outcome Variables:

Chinese Score 70.56 9.55 3,944
Math Score 70.65 9.78 3,944
English Score 70.60 9.74 3,944
Total Score 74.13 16.84 3,944

B. Student’s characteristics:
Only child in family .48 .50 3,944
Relative age (month) 1.29 7.29 3,944
Minority .10 .30 3,931
Local resident (Hukou System) .77 .42 3,944
Attend kindergarten .85 .36 3,906
Father’s Education 4.41 2.06 3,943
Mother’s Education 4.09 2.46 3,943

C. Head teacher’ characteristics:
Female head teacher .71 .45 3,944
Teaching experience of head teacher (year) 14.39 7.89 3,944
Chinese head teacher .29 .21 3,944
Math head teacher .32 .22 3,944
English head teacher .25 .19 3,944

Table 17: Summary Statistics for Female and Male Students Subgroups
Female Male

Mean SD Mean SD
A. Outcome Variables:

Chinese Score 73.44 7.68 67.93 10.24
Math Score 71.43 9.35 70.00 10.11
English Score 73.17 8.75 68.22 9.95
Total Score 76.72 16.31 71.68 16.97

B. Student’s characteristics:
Only child in family .48 .50 .55 .50
Relative age (month) .60 7.10 1.88 7.41
Minority .10 .30 .09 .29
Local resident (Hukou System) .78 .41 .76 .43
Attend kindergarten .85 .36 .84 .36
Father’s Education 4.48 2.08 4.35 2.04
Mother’s Education 4.11 2.03 4.09 2.06

C. Head teacher’s characteristics:
Female head teacher .72 .45 .70 .46
Teaching experience of head teacher (year) 14.55 7.86 14.23 7.93
Chinese head teacher .30 .46 .29 .45
Math head teacher .32 .47 .32 .47
English head teacher .26 .44 .25 .43

Sample Size: 3893, including 1890 females and 2003 males13

5.2 Empirical Strategy

5.2.1 Specification 1: Single Network

To estimate the heterogeneous peer and contextual effects for male and female students based on
the single network constructed by classmates, the following model can be used:39



yi =
∑

g∈{F,M}

dg,iλg ȳ−i,ci +
∑

g∈{F,M}

dg,ix̄
′

−i,ciγg + x
′

iβ1 + t
′

ciβ2 + αsi + ui (30)

where ci and si denote the class and school identity associated with individual i. yi is individual
i’s academic achievement showed in Table 16 Section A, including midterm scores of Chinese,
Mathematics, English and the total score. dF,i and dM,i are dummy variables for female and
male students, so for each individual i, dF,i + dM,i ≡ 1. ȳ−i,ci is the average score of individual
i’s classmates excluding her/him-self. x

′

i,ci
include pre-determined characteristics of individual i

showed in Table 16 Section B. x̄
′

−i,c include the average characteristics of individual i’s classmates
excluding her/him-self. t

′

ci contain the characteristics of the head teacher of the class ci, which is
showed in Table 16 Section C. αsi captures the effects of common variables, either observable or
more commonly unobservable, which are identical for all the students in the same grade of the same
school. ui is the residual term. Then, in this model, {λF , λM} and {γF , γM} capture the peer and
contextual effects for students of different genders.

Denote Yn = (y1, · · · , yn)
′
, HF = diag {dF,1, . . . , dF,n}, HM = diag {dM,1, . . . , dM,n}, Xn =

(x1, · · · , xn)
′
, Tn = (tc1 , · · · , tcn)

′
, un = (u1, · · · , un)

′
, and define hs as the dummy variable for

each school s, then we can rewrite the model into the following vector form:

Yn =
∑

g∈{F,M}

λgHgWnYn +
∑

g∈{F,M}

HgWnXnγg +Xnβ1 + Tnβ2 +

S∑
s=1

αshs + un (31)

where n is the total number of observations and S is the total number of schools. hs is the school
dummy variable for school s. Wn is the row normalized n× n matrix with each element

wij,n =

1/ (|ci| − 1) ci = cj

0 ci ̸= cj

which defines the social network in the same classroom. |ci| is the total number of students in class
ci. The parameters of interest are θ0 = (λF,0, λM,0, γF,0, γM,0, β1,0, β2,0, σ

2
0)

′. By QML method
developed in Section 2.3, we can estimate this model.

5.2.2 Specification 2: Multiple Networks

In the study of heterogeneous peer/contextual effects with gender being the heterogeneity source in
student academic achievement, it would be more interesting to separately identify both the within-
gender peer/contextual effects and the cross-gender peer/contextual effects for female students and
male students respectively, and examine their heterogeneous interaction patterns. The empirical
specification for this purpose can be

yi =
∑

g∈{F,M}

∑
p∈{F,M}

dg,iλg,pȳ−i,p,ci +
∑

g∈{F,M}

∑
p∈{F,M}

dg,ix̄
′
−i,p,ciγg,p

+ x′
iβ1 + t′ciβ2 + αsi + ui

(32)
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where yi, xi, tci and αsi are the same as the single network setting. dg,i is the dummy variable

for student ith gender, dF,i + dM,i = 1. ȳ−i,p,ci =

average score of female classmates if p = F

average score of male classmates if p = M

and x̄−i,p,ci =

average characteristics of female classmates if p = F

average characteristics of male classmates if p = M
. Therefore, {λF,F , λM,M}

and {γF,F , γM,M} capture the within-gender peer and contextual effects, while {λM,F , λF,M} and
{γM,F , γF,M} capture cross-gender peer and contextual effects.

In matrix/vector form, the model can be rewritten as

Yn =
∑

g∈{F,M}

∑
p∈{F,M}

λg,pHgWp,nYn +
∑

g∈{F,M}

∑
p∈{F,M}

HgWp,nXnγp,g

+Xnβ1 + Tnβ2 +

S∑
s=1

αshs + un

(33)

WF,n and WM,n are row normalized n× n matrix with each element

wij,F,n =

1/ (|Fci | − 1) ci = cj

0 ci ̸= cj
and wij,M,n =

1/ (|Mci | − 1) ci = cj

0 ci ̸= cj

where |Fci | is the total number of female students in class ci, and |Mci | is the total number of male
students in class ci.

5.2.3 The control of school-grade fixed effects

Here some people may wonder why we control the school-grade level instead of classroom level
fixed effects. On one hand, there are some technical limitations to include smaller group level fixed
effects. Since we include the characteristics of head teachers which should be identical for students
in the same class, those variables are perfectly multi-collinear with classroom level fixed effects
obviously. Thus, we are not able to separately identify the potential pre-determined classroom
selection effect and the effect from the head teachers. Similarly, gender-classroom or gender-school
level fixed effects can not be included in the model. Since they are perfectly co-linear with the
female dummy, they can not be separately identified from the gender effect. Thus, the smallest
unit of group which we can control for fixed effects is the school assignment.

On the other hand, it is due to our sample features. In fact, as we described in Section 5.1,
for each school, the classes are randomly assigned, there is no need to control classroom level fixed
effects. But at school level, since we have both public schools and private schools included, they
might have different selection standards for students. Even if they did not, the different levels of
tuition fees would potentially differentiate the students. Besides, different regions in China have
different ways to allocate students into junior high schools. For example, in 2013 which is the year
our sampling students entered their junior high schools, the capital city Beijing just allocate the
students into public schools nearby their homes randomly. However, in the same year, Tianjin, which
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is another municipality in China close to Beijing, used application basis just like college admission,
and the schools selected the students based on their performance in elementary schools, their scores
in junior high school entrance exams hold by local governments, or even private tests/interviews for
top schools. Thus, the school allocation in our sample is definitely non-random. Considering both
technical and sample reasons, controlling the school-grade level fixed effects is our best choice.

5.3 Estimation Results

Table 18a and 18b summarize our estimation results with the single network constructed by class-
mates, and those with multiple networks constructed by gender subgroups in a class are reported
from Table 19a to Table 19e. First, the log-likelihood values exhibit slight improvement for all the
four models with multiple networks specification (Table 19e) than those with single network (Table
18b). By the Efron’s R2, the models using total score as the dependent variable provides the best
model fit. It might arise from the fact that in China, for junior high school students, the goal of
study is to maximize one’s total score rather than the test score of a specific subject. Students
might strategically make some trade-offs for their study time among the three score subjects. As
a result, the estimation results for the total score columns might be more meaningful as it’s less
noisy, while the results in other columns can be used as comparisons.

Second, we consider the estimation results for peer effects (Table 18a and Table 19a-19d).
Under the single network specification, the gender disparity in peer effects from classmates are
modest. 1 standard deviation increase in classmates’ average achievement raises a male student’s
total score by 6.532 points and that of a female student by 5.456 point. However, we find strong
evidence for heterogeneous gender peer effects from female and male classmates as significant gender
disparities are detected under the multiple networks specification. For all the subjects, female
students’ performances are more subject to both female and male peers’ influences. The finding
is consistent with some previous studies, for instance, Yakusheva et al. (2014) and Trogdon et al.
(2008) find that females are subject to peer influence in weight gain. Besides, female peers’ average
achievement contribute more to a student’s Chinese and total test scores, while for Mathematics,
male peers’ average achievement have more impacts. For the English subject, the impacts of female
and male classmates are not significantly statistically different from each other. 14 If we focus
on peer effect estimates of the total score, the within-gender effects are stronger than cross-gender
effects for female students, while for male students, the opposite is true. 1 standard deviation
increase in female classmates’ average achievement lead to 10.838 points increment in a female
student’s total score, and raises a male student’s total score by 8.245 points. For the 1 standard
deviation increase in male classmates’ average achievement, a female student’s total score can be
raised by 7.411 points and that of a male student is increased by 5.853. These results show that
the social multiplier effects exist in Chinese junior high school learning and the magnitudes differ
by heterogeneous social interaction patterns among gender subgroups.

Third, we consider the impacts of individual characteristics (Table 18b and Table 19e). The

14The estimated peer effect coefficients from the impacts of female classmates on females and males are λ̂F,F = .5140

and λ̂M,F = .4489, and those from male classmates on females and males are λ̂F,M = .7130 and λ̂M,M = .4762, by
simple test statistics, we can not reject the null hypothesis that H0 : λ̂F,F,0 = λ̂F,M,0, and λ̂M,F,0 = λ̂M,M,0.

42



estimates are robust under both specifications with same signs and close magnitudes. We do
not find significant impacts of minority students and students who are local residents on the test
scores. We detect that being the only child in the family slightly raises a student’s test scores,
as depicted in previous literature such as Poston and Falbo (1990), Falbo and Poston (1993),
Li and Zhang (2017)15. We show that having attended kindergarten helps to increase students’
academic achievement, which offers the evidence for the importance of early childhood education.16

Furthermore, a student’s test scores for all subjects are positively correlated with his/her parents’
education levels, similar results can be found in Davis-Kean (2005) and Dickson (2016).17

We capture a counterintuitive result that an older student performs a little bit worse in all
subjects, which seems to violate the famous “relative age effect (RAE)”. However, RAE are more
commonly seen in the sports field, for instance, Musch and Grondin (2001), Helsen et al. (2005), and
Delorme et. al. (2010), whereas we focus on the academic outcomes. Moreover, since a student’s
relative age is the ± month(s) compared with the sample median value of students’ date of birth
(February, 2001) by our construction, due to the fact that there is a cutoff date regulating the
precise age for entry into primary school in China and that our sample has excluded students who
have skipped or repeated grades in the junior high school, relative age is a good approximate for
whether a student has repeated or skipped grades in primary school because the data for repeated
or skipped grades is quite noisy and with some missing values due to students’ self-report in the
questionnaire. To see this, we decompose our sample into three subgroups: the delayed range group
(19.16%, might have repeated grades in primary school) that is at least 5 months older than the
sample median, the regular range group (71.10%) that is at most (or exactly) 5 months older and at
least (or exactly) 6 months younger than the sample median value, the earlier range group (9.74%,
might have skipped grades in primary school) that is at least 6 months younger than the sample
median. As in Table 20a and Table 20b, the regular range group has lower correlation coefficients
with all the subjects, while the other two groups have higher negative correlations. The regular
range group has test scores around the sample averages, but the delayed range group has lower
average scores, and the earlier range group has the opposite outcomes. Based on these findings, we
might safely conjecture that the extreme performance of the delayed range and the earlier range
groups has dragged the sign of the estimated coefficients to the slightly negative side.

Fourth, for contextual effects, some variables show significant impact. Under the single network
specification (Table 18a), the contextual variables that show negative effects include relative age
(for both female and male students)18, minority (for a female student’s Chinese score)19, and

15Poston and Falbo (1990) find that those without siblings score higher academically than those with siblings.
Falbo and Poston (1993) show that onlies are more likely to outscore others in verbal tests in terms of academics.
Li and Zhang (2017) provide new evidence of the causal effect of child quantity on child quality.

16One related finding in Chetty et al. (2011) is that kindergarten test scores are highly correlated with outcomes
such as later earnings and college attendance.

17Parents’ years of schooling was found to be an important socioeconomic factor for students’ academic outcomes
(Davis-Kean, 2005) and increasing parental education has a positive causal effect on children’s outcomes (Dickson,
2016).

18Being in a class with older classmates decreases a student’s Math and total scores and reduces the English score
if the student is male. In other words, given a student’s age ranking in the sample, being with higher percentage
of older classmates puts the student at an unfavorable academic status. The finding is consistent with Bedard and
Dhuey (2006), which state that youngest members of each cohort score lower than the oldest members in grade 4
and 8, although they didn’t formally use “contextual effects” to describe their finding.

19There might be some trade-off effects for the time that a female student can spend on using minority language
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attended kindergarten (for a male student)20. On the other hand, having classmates who are only
child in family will help improve a female student’s total score, and having classmates who are
local resident will raise a male students’ Math score, having classmates who have mothers with
higher education level will improve a male student’s Chinese score, which is a similar result as
in Chung and Zou (2020) and Bifulco et al. (2011)21. Under the multiple networks specification
(Table 19a-19d), relative age, local resident, attended kindergarten, and parents’ education levels
show some significant impacts, but whether the impacts are positive or negative, and which ones
are stronger between the within-gender effects and cross-gender effects vary across different gender
groups and depend on the subjects. Two contextual variables that are worth noting are relative age
and mother’s education. Relative age demonstrates both competitive effects and complementary
effects for a female student, i.e., having older male classmates will deteriorate a female student’s
Chinese and Math scores, while having older female classmates will improve a female student’s
English and total scores. By the contextual effect of mother’s education, we detect the specific
channel about how higher classmates’ maternal education raises a students’ test score (Chung and
Zou, 2020), i.e., a female student’s Mathematics and total test scores are positively affected when
her male classmates have higher educated mothers.

Last, the roles of head teachers’ characteristics are investigated. Under the single network
specification (Table 18b), we detect that having a female head teacher can raise a student’s Chinese
and total test score.22 Additionally, similar with Rockoff (2004) and Ladd and Sorensen (2017)23,
we capture significant positive influences of an experienced head teacher on a student’s Math score,
but evidence about its impact on Chinese, English and the total scores are not found. Then, when a
head teacher teaches Math or English, a student’s corresponding test scores rise.24 However, under
the multiple networks specification (Table 19e), the effects of head teachers’ characteristics are not
significant. The impact of a head teacher on a student’s academic achievement might be entangled
with interaction patterns of within and across gender subgroups in the same class, but under current
model design, we are unable to identify the specific channel, which might be an interesting topic
for future research.

and learning Chinese when her classmates are minority.
20Although early childhood education benefits later cognitive outcomes, it worsens a male student’ total score

when surrounding peers also have this advantage.
21Chung and Zou (2020) find that higher classmates’ maternal education raises students test score, and Bifulco et

al. (2011) states that increases in the percent of classmates with college-educated mothers decreases the likelihood
of dropping out and increases the likelihood of attending college.

22A finding that is somewhat consistent with Gong et al. (2018), which show that the gender of teacher matters,
i.e., having a female teacher raises girls’ test scores and improves their mental status and social acclimation relative
to those of boys.

23Rockoff (2004) presents evidence that teaching experience significantly raises student test scores. Ladd and
Sorensen (2017) find large returns to experience for middle school teachers in the form of higher test scores.

24The possible explanation might be that a Math or English subject teacher, who is also the head teacher, is more
likely to provide positive feedback to boost students’ confidence in studying and enforces students’ beliefs about the
importance of the corresponding subject.
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Table 18b: Results for Students and Head Teachers’ Characteristics (Single Network)
Chinese Mathematics English Total

Students’ Characteristics:

Only child in family .6831** .8476** .5880* .7883**
(.3387) (.3628) (.3470) (.3631)

Relative age -.0653*** -.1377*** -.1208*** -.1411***
(.0229) (.0247) (.0234) (.0246)

Minority -.1849 -.9118 -.3147 -.7075
(.6976) (.7451) (.7118) (.7487)

Local resident -.1869 .0863 -.1700 -.0376
(.3974) (.4225) (.4056) (.4259)

Attend kindergarten 1.7546*** 1.4655*** 1.5599*** 1.7002***
(.4116) (.4400) (.4207) (.4409)

Father’s Education .2002** .2589** .4361*** .3539***
(.0993) (.1063) (.1015) (.1064)

Mother’s Education .3528*** .1811* .2539** .2700**
(.1024) (.1091) (.1041) (.1094)

Head teachers’ Characteristics:

Female 1.1822** .9150 .1980 1.0761*
(.5978) (.6901) (.7080) (.6367)

Teaching experience .0195 .1207** -.0004 .0577
(.0362) (.0408) (.0376) (.0397)

Teach this course -.7817 1.5422** 2.8613*** .7996
(.5160) (.5447) (.8189) (.7755)

Log Likelihood -13982 -14243 –14059 -14251
Efron’s R2 .1467 .0788 .1492 .6885

46



Table 19a: Results for Peer and Contextual Effects for Chinese (Multiple Networks)
Female Classmates Male Classmates
Female Male Female Male

Peer Effects .7734*** .5315*** .5125*** .4112***
(.0854) (.0666) (.1088) (.1008)

Contexual Effects:

Only child in family -.2905 -.7255 -2.4732 -3.9304
(2.1785) (2.2159) (3.6477) (3.5172)

Relative age .1823 -.0467 -.3581* .1224
(.1702) (.1675) (.1962) (.1901)

Minority 9.2257 -.9966 -8.7721 2.0019
(5.8687) (5.9554) (6.7361) (6.4996)

Local resident .8898 -1.8995 -3.8662 3.3407
(2.6673) (2.6811) (2.8180) (2.6604)

Attend kindergarten -3.0196 3.9821 -6.3429* 1.3857
(3.6818) (3.5969) (3.6933) (3.6009)

Father’s Education .1306 .1437 -1.1901 .2700
(.8162) (.8456) (.8486) (.8292)

Mother’s Education -.6086 -1.1002 .6998 .4899
(.9664) (1.0023) (.9991) (.9620)

Sample Size: 3893, including 1890 females and 2003 males
Significance Level: * <10%, **< 5%, *** <1%

Table 19b: Results for Peer and Contextual Effects for Mathematics (Multiple Networks)
Female Classmates Male Classmates
Female Male Female Male

Peer Effects .3989*** .2482*** .5652*** .4683***
(.0730) (.0839) (.0988) (.0967)

Contexual Effects:

Only child in family 1.7972 -2.8156 -4.4454 1.5916
(2.4011) (2.4220) (3.9466) (3.7976)

Relative age .2740 -.0730 -.4849** .0683
(.1806) (.1790) (.2123) (.2015)

Minority 4.2831 -1.2726 -7.5487 .7558
(6.1626) (6.2631) (7.1075) (6.8799)

Local resident 4.1093 -2.2392 -5.5803* 5.1577*
(2.8141) (2.8532) (3.0723) (2.8911)

Attend kindergarten -1.0687 3.3024 -4.7658 1.1933
(3.9099) (3.7246) (3.8439) (3.5472)

Father’s Education -.5004 1.3676 -1.4728 .2082
(.8834) (.9075) (.9237) (.8807)

Mother’s Education -.4686 -.6195 2.2530* -.9135
(1.0204) (1.0587) (1.0950) (1.0423)

Sample Size: 3893, including 1890 females and 2003 males
Significance Level: * <10%, **< 5%, *** <1%
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Table 19c: Results for Peer and Contextual Effects for English (Multiple Networks)
Female Classmates Male Classmates
Female Male Female Male

Peer Effects .6140*** .4489** .7130*** .4762
(.1197) (.1781) (.1606) (.3031)

Contexual Effects:

Only child in family 1.7173 -1.2912 -6.3287 -3.7488
(3.4419) (3.8040) (3.9272) (3.5656)

Relative age .3245* -.0599 -.2713 .2511
(.1732) (.1688) (.2212) (.2531)

Minority 6.0672 5.8218 -3.8457 -1.1949
(6.2754) (6.3311) (7.2545) (6.8532)

Local resident 3.8016 -1.8771 -8.1032** 3.7163
(2.6681) (2.8193) (2.9436) (3.0092)

Attend kindergarten -7.5587** 5.6609 .6911 1.1286
(3.6176) (3.7019) (4.5833) (5.1422)

Father’s Education -1.1618 .5321 -1.2378 .7179
(1.0101) (1.0908) (.9188) (1.0457)

Mother’s Education -.0599 -.8382 1.2656 -.4033
(.9700) (1.0413) (1.0477) (1.1543)

Sample Size: 3893, including 1890 females and 2003 males
Significance Level: * <10%, **< 5%, *** <1%

Table 19d: Results for Peer and Contextual Effects for Total Score (Multiple Networks)
Female Classmates Male Classmates
Female Male Female Male

Peer Effects .6645*** .5055*** .4367*** .3449***
(.0854) (.0731) (.1107) (.0949)

Contexual Effects:

Only child in family .7100 -2.1874 -5.1136 2.3158
(2.3602) (2.3880) (4.1073) (3.9398)

Relative age .4468** -.2151 -.3330 .0388
(.1872) (.1848) (.2096) (.2001)

Minority 4.2213 -4.3866 -11.9775 4.4193
(6.2655) (6.3663) (7.5096) (7.2233)

Local resident 4.6416 -5.5168* -5.4366* 7.4535**
(2.9250) (2.9339) (3.0552) (2.8492)

Attend kindergarten -1.8706 1.2642 -2.2291 -.5564
(3.9767) (3.8201) (3.8645) (3.6747)

Father’s Education -.7261 .7579 -1.6946* .3593
(.8840) (.9119) (.9415) (.9040)

Mother’s Education -.3528 -.5139 1.8081* -.5879
(1.0699) (1.1102) (1.0876) (1.0458)

Sample Size: 3893, including 1890 females and 2003 males
Significance Level: * <10%, **< 5%, *** <1%
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Table 19e: Results for Students and Head Teachers’ Characteristics (Multiple Networks)
Chinese Mathematics English Total

Students’ Characteristics:

Only child in family .5946* .7728*** .5065 .8019**
(.3486) (.3702) (.3534) (.3762)

Relative age -.0627*** -.1142** -.0993*** -.1201***
(.0233) (.0247) (.0236) (.0251)

Minority .2142 -.7511 -.0197 -.3891
(.7077) (.7495) (.7102) (.7640)

Local resident -.3122 -.0315 -.1521 -.0121
(.4046) (.4291) (.4016) (.4364)

Attend kindergarten 1.6937*** 1.6219*** 1.6241*** 1.8566***
(.4192) (.4425) (.4256) (.4499)

Father’s Education .2367** .2782** .4416*** .3761***
(.1008) (.1071) (.1034) (.1088)

Mother’s Education .2983*** .1610 .2304** .2504**
(.1041) (.1105) (.1042) (.1124)

Head teachers’ Characteristics:

Female -.1180 .4767 -.3119 .2077
(.6354) (.7766) (1.4381) (.6936)

Teaching experience .0435 .0477 .0232 .0411
(.0414) (.0439) (.0484) (.0451)

Teach this course .0803 .3344 -.4607 .0652
(.5618) (.5857) (1.8734) (.8861)

Log Likelihood -13955 -14215 -14041 -14233
Efron’s R2 .1251 .0739 .1252 .6771

Table 20a: Correlation Coefficients Between Grades and Relative Ages

All Range Delayed Range Regular Range Earlier Range
(Relative Age>5) (-6≤Relative Age≤5) (Relative Age<-6)

Chinese -.0885 -.0224 .0013 -.0603
Mathematics -.0886 -.0200 -.0333 -.1298
English -.1124 -.0826 -.0150 -.0764
Total -.1990 -.0576 -.0275 -.0766
# observations 3893 746 2768 379

Table 20b: Average Grades for Different Age Ranges

All Range Delayed Range Regular Range Earlier Range
(Relative Age>5) (-6≤Relative Age≤5) (Relative Age<-6)

Chinese 70.6049 68.8624 70.8442 72.2879
Mathematics 70.6940 69.3231 70.8073 72.5650
English 70.6258 68.7782 70.8314 72.7606
Total 74.1286 66.0787 75.9426 76.7250
# observations 3893 746 2768 379
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6 Conclusion

This paper considers higher-order spatial autoregressive models with group fixed effects to confront
some conceptual problems in social interaction estimation. The heterogeneous peer and contextual
effects can be separately identified and the peer effects can be disentangled from other confounding
effects captured by the group fixed effects term. We show consistency and asymptotic normality
of the proposed QMLE and verify its finite sample performance by Monte Carlo simulations. We
detect significant gender disparities in peer effects from gender subgroups in a classroom for Chinese
junior high school students, which provides justification for some policy related interventions aimed
at improving social welfare in school learning. As in Lin (2010), the limitation of the group fixed
effect model is that it can not deal with possible unobservable factors in common within groups.
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