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Abstract

This paper considers social interaction models with group fixed effects and observed het-
erogeneity among agents. By likelihood approach, with the control of group-level confounding
effects of the common variables, both heterogeneous endogenous peer effects and exogenous
contextual effects can be identified and estimated consistently. Under some regularity assump-
tions, we prove the consistency and asymptotic normality of the QMLE. Monte Carlo simulation
results show that our QMLE has good finite sample performance. For an application, we in-
vestigate the China Education Panel Survey (CEPS) and focus on gender heterogeneity on
academic achievement of Grade 8 students in junior high school. We capture significant gender
disparities in peer effects from gender subgroups in a classroom. Besides, female students’ test

scores are more subject to both female and male peers’ average achievement.

1 Introduction

Social interaction effects have received substantial attention since Coleman et al. (1966). Peer ef-
fects, as a typical example, have inherent externality (Hoxby, 2000), which provides justifications for
policy intervention targeted at enhancing social welfare. However, the identification and estimation
of social interaction effects is hard. Linear-in-means models might suffer from “reflection problem”
described by Manski (1993), omitted variable bias problem (or correlated effects in Manski (1993))
2 and data limitation about an individual’s reference group.

The spatial autoregressive (SAR) model with both endogenous peer effects and exogenous con-

textual effects combined with group fixed effects can confront the difficulties mentioned above, since
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LTt refers to the impossibility of separately identifying two distinct types of social effects - endogenous or behavioral
effects and contextual or exogenous effects. The former one can generate a social multiplier while the latter one do
not.

2It’s difficult to disentangle social effects from other confounding effects. Peer group formation might not be
random. The validity of strategies such as instrumental variable (IV) method, family fixed effect and experiment
type strategy is open to question (Lin, 2010).



the nonlinearity introduced by variations in the measurements of the peer variables provides help-
ful information for identification. For instance, Lee (2007) incorporate endogenous and contextual
effects and group fixed effects into a SAR model and consider a group interaction setting, which
assumes that an individual is equally affected by all the other members in the same group. The
proposed conditional maximum likelihood (CML) and IV methods rely on sufficient variations in
group sizes for identification. Lin (2010) instead specify the spatial weight matrix based on the
actual friendship network within each group and employ the “de-group-mean” approach for esti-
mation. These two papers provide valuable framework for social interaction models, but they only
consider homogeneous agents. Besides, one limitation of their studies is that they can only deal
with interaction structure within a group, but not the case when an individual also interact with
other individuals outside the group.

A more realistic social interaction scenario is that individuals’ with disparate types, such as
gender, races and education background, have different interaction patterns with other members,
either from the same group or from different groups. Heterogeneous social interaction effects are
investigated in some previous works (e.g., Yakusheva et al. (2014), Lu and Anderson (2015),
Tincani (2018)), however, most of them consider experiment type or quasi - experimental strategy,
as pointed out by Lin (2010), the validity of which depends heavily on the design and implementation
of the experiment since it’s possible that what’s supposed to be random is actually a result of self-
selection. The higher-order SAR (HSAR) models might provide a solution. Hsieh and Lin (2017)
apply a HSAR model to study heterogeneous peer effects with endogenous network formation by
using Bayesian approach for estimation. Gupta and Robinson (2018) develops pseudo maximum
likelihood estimates for HSAR models with increasingly many parameters without considering fixed
effects. Aquaro et al. (2020) considers estimation and inference of a spatiotemporal model with
spatial lag coefficients being differed over the cross-section units.

This study further extend the HSAR model to incorporate both heterogeneous endogenous
peer effects and exogenous contextual effects as well as group fixed effects in a social interaction
setting. First, unlike the Bayesian approach in Hsieh and Lin (2017), we propose a quasi-maximum
likelihood (QML) approach for identification and estimation. As will be discussed in Section 2.3,
the approaches in Lee (2007) and Lin (2010) can not be applied to handle the group fixed effects
in the presence of heterogeneity among agents. Instead, similar to Yu et al. (2008)3, we consider
a direct estimation approach by the joint estimation of the model parameters and the group-fixed
effects. Since there exists asymptotic bias as the expectation of the first order derivatives evaluated
at the true parameter values are not centered at zero, a bias correction procedure can be employed
subsequently to greatly reduce the bias, which can be verified by the Monte Carlo simulation results.
Second, the QML estimation can accommodate two commonly seen sampling methods in empirical
applications: (i) more group members are included in the sample as the sample size increases,
keeping the group number fixed; (ii) more groups enter the sample as the sample size increases,
while keeping group members unaltered. We can obtain consistency and asymptotic normality for

the estimates of the parameters of interest in both cases. For the first case, the limiting distribution

3They propose estimation methods for spatial dynamic panel data (SDPD) models with both time and individual
fixed effects.



of each group fixed effect can be derived, while the limiting distribution doesn’t exist for the second
case. Third, our model also allow a more general scenario that an individual might interact with
other individuals outside her /his group, which can not be handled by previous approaches.

We then apply our model to investigate China Education Panel Survey (CEPS) and focus on
gender heterogeneity on academic achievement of Grade 8 students in junior high school. First,
significant gender disparities in peer effects from gender subgroups in a classroom are captured. In
general, a female student’s test score is more subject to both her female and male peers’ average
achievement than a male student. Besides, female classmates’ average education outcome has higher
impact on a student’s, either female or male, Chinese and total test scores, while male classmates
contribute more to a student’s Mathematics academic achievement. Second, we find evidence that
the contextual effect of a student’s relative age (measured by + month(s) compared with sample
median date of birth) has both competitive effects and complementary effects for a female student.
To be more specific, being in a class with older male classmates would slightly reduce a female
student’s Chinese and Mathematics test scores, while staying with older female classmates can be
beneficiary to a female student’s English and total test scores. Third, by the contextual effect of
mother’s education, we detect the specific channel about how higher classmates’ maternal education
raises a students’ test score (Chung and Zou, 2020), i.e., a female student’s Mathematics and total
test scores are positively affected when her male classmates have higher educated mothers. Those
findings might provide evidence to support some low-cost ways to potentially improve students’
academic performance within the world’s largest school system. Last, the impact of a head teacher
might be entangled with interaction patterns of within and across gender subgroups in the same
class, but under current setting, we are unable to detect the channels, which might be an interesting
topic for future studies.

In the following parts of this paper, Section 2 introduces the model setting, economic foundation
and the quasi-maximum likelihood estimation method. Section 3 discusses the asymptotic prop-
erties of the QMLE, including conditions for identification, proofs for consistency and asymptotic
distribution of the QMLE. Section 4 shows the finite sample performance of our QMLE by Monte
Carlo simulations. Section 5 applies the model to data sets from CEPS and examines heterogeneous

peer and contextual effect in Chinese student academic achievement.

2 Model Formation and the QMLE
2.1 Model Setting

Suppose there are n individual units in an economy. For regularity, we need the following assump-

tions:

Assumption 1 (Heterogeneity Source):
All individuals can be classified into K types {Kﬁ}le , which satisfy UszlleL =n and KM N
ICff =0 for k1 # ko. K is a constant which does not depend on n.



Assumption 1 indicates that the heterogeneity is observed and generated by categorical charac-
teristics of individuals. First, {ICfL}szl may not be consecutive, which means that the division of
types can be irrelevant to neighborhood relationship among individuals. For example, students com-
ing from the same school/classroom can be divided into subgroups based on their characteristics.
Second, we assume K is a constant, which is consistent with most empirical scenarios since a repre-
sentative sample is needed regardless of the sample size and most of the categorical heterogeneities,

such as gender, race and educational background, only have finitely many types.

Assumption 2 (Group Assignment):
The n individuals belong to G groups {gg}le which satisfy ug’zlgg =n and GI* NG9 =0 for

g1 # g2. G can be a constant or growing with n.

Assumption 2 assumes the individuals are assigned to different groups and the group assignment
may not be random. First, the assumption about the number of groups G can accommodate two
sampling methods commonly seen in empirical studies: (i) G is fixed, while the group members
grows with sample size n; (ii) group members are fixed, while G grows with n. Second, the groups
in Assumption 2 and categories in Assumption 1 can be different. We treat the heterogeneity and
group assignment as two abstract ways of segmentations of all the individuals n.

Let y; be individual i’s outcome, z; = (2;1,...,%;,1) be L univariate exogenous variables for

i, and w;j;, be the link captures the impact from individual j to individual ¢ ( wiin = 0). For

1 iekk
heterogeneity, define h;j; = " as the indicator of type identity for individual i and
0 i¢Kk
. . = 1 iegf -
category k. Similarly, for group assignment, define h; ; = as the indicator for whether
0 i¢Gs

individual 7 belongs to group GJ or not. For each individual i, we consider the following model:

K n K n
i
Yi = E Arhi g E WijnYj | + E hi x E WijnT; | Vi
k=1 j=1 k=1 j=1

G
+ x;ﬁ + Z higag +u; (1)
g=1

where u; o (0, 02). In this model, Ax and ~y; capture the spillover effects from neighbors received

by an individual of category KF directly or indirectly, i.e., peer and contextual effects respectively.
B measure the effects from external regressors which are only associated with the individual him-
self/herself. oy is a group-level fixed effect of group G¢ , which captures the common factors, either

observed or unobserved, faced by all group members.
Let Yn = (yl, 7yn) ) Xn = (Z’h"' ,an) 5 Wn = (wij,n)ana Hk:,n = dZCI,g (hl,ka"' ahn,k)y

’
’

a=(ag, - ,Oé(;)/, Hg = (E1,~-- ,TLg) Where%g = (7117g,--- ,i~1n7_q> ;and u, = (U, ,up) . We



can rewrite the model into the following matrix form:

K K
Yn = Z )\ka,anYn + Z Hk,anXn’Yk + Xnﬂ + HGQ + un (2)
k=1 k=1
Equation (1)(or (2)) is the single network specification, in Section 2.4, we consider a simple extension

to the multiple networks specification.

2.2 Economic Foundation

The above model setting captures externalities from social interactions through a network, and
allows the levels of externalities to be associated with individuals’ types. When individual i’s
outcome y; reflects his/her action, it can be regarded as a model of the Nash equilibrium of a static
complete information game with different types of players processing the following linear-quadratic

utility function:

2

n n

wi (yi) = yi | 8 + Z Wi Tk + g + i | — % Yi — Ak Z Wij nY; (3)

j=1 j=1

for individual ¢ who has type k and belongs to group GJ. The first component represents private
utility associated with his/her own action y; which includes contextual effects from other individuals’
characteristics, group fixed effects and random effects (notation changed from w; to v; to avoid
ambiguity). The second component captures the interaction with neighbors, which is a conformity
effect directly associated with neighbors’ actions. The unique equilibrium outcome of individual
i can be obtained by maximizing wu; (y;) with respect to y;, and is exactly described by equation
(1)%. Unlike the SAR situation in Brock and Durlauf (2001), the conformity effect here does depend
on the type of i himself/herself. For example, female and male students will receive different peer
effects from their classmates, and also students of different gender have distinct sensitive levels to

average peer outcome.

2.3 QML Approach and Bias Correction

In existing literature, Lee (2007) demonstrates that in his model both endogenous and contextual
effects are identifiable if group sizes are not constant, and that weak identification can occur in
the case of large group sizes. Lin (2010)’s “de-group-mean” approach generalizes Lee (2007) by
allowing the case when all the group sizes are identical. However, the “de-group-mean” approach
has two limitations. First, it is only suitable to the scenario that individuals only interact with other
individuals inside the same group. But it doesn’t make sense in some empirical applications. For
example, when studying the impact of peer effects on education outcomes, not only can students
interact with their classmates, but they might also make friends with students in other classes by
out-of-school activities via some sports and arts associations. Without considering the impact from

friends outside the group, the peer and contextual effect might be misspecified. Second, even if a

4Note that h; . and Ei,g are indicator variables.



group member only interact with other group members, when heterogeneity is introduced into the
social interaction models, the “de-group-mean” transformation of data before forming the likelihood
function in Lin (2010) is still not a good way to deal with group fixed effects, below is an illustration.

Assume for each group GZ, we have

K K
Yy =3 MeHegWoYy+ > HegWoXovi + g + g (4)
k=1 k=1
where Y, and X, are the vector and matrix of outcomes and characteristics of the members in group
GJ. Wy and Hy 4 are defined similar as W,, and Hy, for the adjacent matrix and heterogeneity
source categories for group G¢. Let mgy be the number of individuals in group GZ, to eliminate o,
v

the “de-group-mean” approach suggests that we can multiply J, = I, — milg g0
g

mg-dimensional vector of ones, on both RHS and LHS of (4). Then,

where [, is the

K K
J Y, = Z Aoy Hy g W, Yy + Z JyHy oW, X gvi + Jyuy
k=1 k=1

At first glance, it is similar to equation (6) in Lin (2010). However, due to the presence of the
heterogeneity matrices Hy g, JoHp qWoYy # JoHy oWoJgYy and JoHy WXy # JoHy oWodg Xy,
even when W is row-normalized because Hy, ,WW, will always have some rows with all zero elements.
Thus, Lee (2007) and Lin (2010)’s approaches can not be applied when heterogeneity is introduced
to the model. Due to both empirical and theoretical limitations discussed, in this paper, we consider
another approach: direct estimation approach by jointly estimating the parameters and group fixed
effect.

For notation simplicity, let A = (Aq,--- 7)\K)/, p = (7/1, e ,’y%,ﬂ) where v = (V15 - Yk,L)
for k = 1,...K and B = (B1,..8L), Zn = (HiaWnXn, -+ HgkaWnXn, Xp) , and S, (A) =
I, *Zszl A Hy, Wy, the log-likelihood function of the model in Section 2.1 under w,, ~ N (O7 021'”)

1S

/

In Ly, (0, a) = —g In (27) — g Ino? +In S, (A)] Up o ig.0 (5)

202
!

where ug o = Sp (A)Y,, — Z,po — Hga and 0 = (A/,gp, 02) . To make sure the likelihood function

exist and the model can be identified, we need the following assumption:

Assumption 3:
Sn (A) is invertible and Z,, is full rank.

Following existing literature (e.g., Yu et al. (2008)), when fixed effects appear in the likelihood
OlnL,(0,a) _

da -
group fixed effects and get the following concentrated log-likelihood function:

. o . . ’
function, by first order condition of «, i.e. %HGUWX = 0, we can concentrate out

1 I e B
InL, () = ,g In (27) — gln 0 + ]S, (A)| = oy Ho Helo (6)



with Hg = I,, — HeMG ' Hy, and @ig = Sy, (A) Yy, — Zygp, where Mg = HpHg = diag (my, -+ ,ma),
and my is the number of individuals in group GJ. Note Mg is always invertible. In Section 3,
we will discuss the identification and asymptotic properties of QMLE based on the concentrated
log-likelihood function (6), since it is easier for us to discuss the asymptotic distributions of 6 and
« separately.

However, due to the existence of heterogeneity, there are still too many parameters in (6)
which might be demanding to maximize it directly through numerical searches. To simplify the
maximization problem, concentrating out as many parameters as possible further is the best way

to numerically compute the QMLE. From (5), we can also get the following first order derivatives:

dln L, (0, a) n 1

b7 307 T ggr et ")
0lnL, (0,a) 1
——— L = —Z U 8

90 3 Zne, (8)
When the log-likelihood function is maximized, (7) and (8) are all equal to zero and we can

solve a, 02 and ¢ by representing them as functions of A:

a =Mz "Hg (I, — ZnA,) S, (A Yy, (9)
07 = Y8, (A) BB, (W)Y, (10)
0= A,5, (N)Y, (11)

, ~ 1, - ~
where A,, = (ZanZn) Z,Hg and B, = Hg (I,, — Z, A,,). With Assumption 3, the invertibility
of matrices showed in (9), (10) and (11) can be guaranteed. Then backing out the results to (6)

yields the concentrated log-likelihood function which only contains parameter A:
n n 1 ’
Qn(AN) = —3 [14+In(27)] — 5 In {nYnCn (A) Yn} +1n|S, (A)] (12)

where C,, (A) = S, (A) B,,B,Sy, (A). As the number of parameters reduced from (K 4 1)(L +1) °
to K by further concentration, the computational time can be greatly reduced.
However, concentrated QMLE by maximizing (12) would have asymptotic bias. To see this, at

true parameter (6y, ap), we have

5(K + 1)(L + 1) + G if group fixed effects are considered



0Qn (M) Y, (HgaW,) Bl BuS, (Ao) Y,
8)\k-, N K;Cn (AO) Yn

—tr (HpnWaS; )

[BaWarS:! (Zupo + Hoao + ) - —tr (Wass;")

2
)

’

1 _
= —tr (Gnx) + = [Ban,kSZI (Znwpo + Hcao)} Up,
0

1 )
+ ;“n (BnGn i) un, (13)

where Wn,k = Hk’an, S, =S, (Ao) = IH_Z£(:1 )\kyown’k and Gn,k = Wn,kS;l for k = 1,--- K.

—
90

In (13), the expectation of linear term - [ann,kSgl (Znpo + HGaO)] U, is zero, but for the

remaining part, we have

1 .
E |:o_2un (BnGn,k)l Up — 1 (Gn’k):|
=tr (B,Gpi) —tr (Gnx) #0

~ — ~ 2 A
Thus, let A (A) = tr [(I = By) WarS;t (An) ] and 35, = za(.)
g—% (A) - g—% (Ag) = EXin (A - AO) +o, (/A\ - A0>, we have the following bias corrected estimator
for A,

, by Taylor expansion

Roen =R+ 37" A, (An> (14)
where A, (An) = (Al’n ([Xn) R VAY o (An>)/ In Section 4, we will compare the performance

of the concentrated QMLE with and without bias correction by Monte Carlo simulations.

2.4 A Simple Extension: Multiple Networks Situation

In many empirical applications, it’s more natural to consider a multiple networks setting instead
of a single network specification. For example, high school students may have multiple social links
with different groups of people, like classmates, friends in student associations or sports clubs. So
we may be interested in estimating heterogeneous peer effects and contextual effects in student
academic achievement under multiple networks setting. In this case, the model described in (1) can

be easily extended to accommodate this scenario:

G

R K n R K n
Yi = Z Z AT‘,khi,k Z WijrnYj | + Z Z hi,k Z wij,r,nx; Vr.k +$;6 + Z }Nli,g()ég +u; (15)
j=1 j=1

r=1 k=1 r=1 k=1 g=1



where w;j,,p is the impact from j to 4 in the network r (Wisrn = 0). Ap g and 7, capture the
heterogeneous peer and contextual effects from network r for type k individuals. Denote W,.,, =
(Wijrn), where Wy p,,--- ,Wg,, are R different networks among the individuals, we can rewrite

equation (15) in matrix form:

R K
)\r,ka,nWhnYn + Z Z Hk,nWr,an’Y'r,k + Xnﬂ + HGO[ + un (16)
1 r=1k=1

] >

ey

r=1k

’

Let A = (Al,lf" a)‘17Ka"' 7)\R71a"' 7)\R7K) y P = (71,17”' ar}/;,K?"' 57;%,1"" 77;%,[(75/) ) Zn =

(Hl,nWLana e 7HK,nW1,an7 e 7H171’LWR71’LX1’L7 e )HKJLWRJLX’I’L? Xn) and
Sp(A) =1, — Zf’:l Zszl Ar e Hig n Wi, the maximum likelihood function is

1 ’
InL,(0,a)= —% In (27) — gln o? +1nlS, (A)| - 252 46,060

which has exactly the same form as the maximum likelihood function (5) for the single network
specification. Since the major difference is that there are more parameters in A and ¢, the con-
centrated approach discussed in Section 2.3 are also applicable as ¢ are linear parameters that can
be concentrated out. Define Wnrk = Hy Wy and Gy r o = ankSgl , by replacing ank and
G.rk» the concentrated log-likelihood functions have the same form as (5) and (12)%. The biased

correction approach is also the same as (14) with slight modification.

3 Asymptotic Properties of the QMLE

We focus on the single network specification for the discussion of asymptotic properties of the
QMLE since the difference of the maximum likelihood functions and the bias correction procedure
between the single network and multiple networks scenarios are modest, i.e., they only differ in the

number of A and ¢ and some changes of notations.

3.1 Identification

As stated in the last section, we will discuss the property of QMLE based on the concentrated
log-likelihood function (6) due to the convenience to separately discuss the properties of estimators
for group fixed effects and other parameters. The identification conditions below are based on
Rothenberg (1971). The expected log-likelihood function for equation (6) is

Qn(6) = Eln L (6)
= n@r) = P no? + 0[S ()] — —— By B Heriig) (17)
= 5 nizm B) no n|on 20_2 ULl I1GUp

Then @, (A) = argmax, Q,(0) = [Z, Ha Zn) " Z1 HaSn(A)S;7t Znpo for each A = (Ay, ..., Ax)’, and

8By the concentrated log-likelihood function for numerical searches, the number of parameters now can be reduced
from (KR+ 1)(L +1) (or (KR4 1)(L + 1) + G if the group fixed effects are considered) to K R.



E (a;ff;;ﬁgag)
=E[(Sn(A)Yn = Znpn(A) Ho Ha (Sn(A)Yn — Znon(A))]
=[BnSn(A)S: Zyo] (BpSn(A)S ' Znipo) + o2tr(S,1S, (A)S, (A)S:) (18)

n n n n

Observe that Sn(A)Sgl = In + ()\1’0 — )\1)Gn,1 + ()\270 — )\2)Gn’2 + ...+ ()\K,O — )\K)Gn,Ka hence

E (i He Helig)
:(AO — A)'(Gnylanpo, ey Gn,KZnQOO),B;LBn(Gn,lanDO; ey Gn,KZnSD())(AO — A)
+ogtr(S, 1S, (M) S (A)S, 1) (19)

by using the property that B,Z, = ﬁg([n — ZnAn)Z, = 0. Then we obtain

on (A) = arg max Qn(A, on(A), ‘72)

]. ! ’ ’
= E(AO - A) (Gn,lanPOa ey Gn,KZnCPO) Ban(Gn,lanOOa ey Gn,KZnQOO)(AO - A)
2
+ 2r(5,71 5, (4) S, (A)S, ) (20)
Define Q,,(A) = Qn(A, 0n(A),02(A)), we consider

Qn(A) - Qn(AO)
= —%(lnai(A) —Inod) + %(1n|§'n(/\)| —In|S,])

1 / / 1 1 / /
= 3 [ 1S,71 S, (A) S () —In (—tr(S,715,(A) S (A)S; )

n

1 ’ ! !
+ W(AO - A) (Gn,IZnSDm vy Gn,KZnSDO) Ban(Gn,IZnSDm ey Gn,KZnSDO)(AO - A)):|
0

A unique identification condition requires that Q,(A) — @n(Ag) < 0 when A # Ay under large n.

Above equation takes a form of 3 [In |D|w — In(1tr(D) + Q)], where D is a symmetric matrix and

Q is a non-negative quadratic form.

There are two identification sources. Since all eigenvalues of S, 1S, (A)S,(A)S;*

. are real and
positive, and each one is denoted by W;(A), then |S, 1S, (A)S,(A)S; = = ([]I Wi(A))= and
%tr(S;’lS;L(A)Sn(A)Sgl) = 15" W;(A). By the inequality of arithmetic and geometric means,
LS w;(A) > ([T7 ¥;(A))w. The first identification source can be obtained if 1 7 W;(A) >
(I17 W,;(A))* when A # Ag. It can be achieved when S, "5/ (A)S,, (A)S; ! is not proportional to I,,
when A # Ay (Claim 1 provides a sufficient (not necessary) condition for this requirement). The

second identification source is the “Q-term”. Ay can be identified if

. 1 ’ !’
lim —(Gn,1Zn90, - Gn kZnpo) ByBn(GniZngo, - .- Gnk Zngo)

n—o00 N

exists and is nonsingular. This condition ensures that the set of regressors [Gr,.1 Zn o0, - - - » Gn. Kk Zn¥o)

10



have no multicollinearity.

Claim 1:

Since Wnk is not symmetric (i.e., H W, # W,;H,;), if I, ka + Wn’k for k = 1,.., K,
W,’LJWM, e ’W;J’V\[}n’K, e ’WAKW”J, cee ’VIZILKW"K are linearly independent, 5,15, (A)S, (A)S; !
is not proportional to I, when A # Ag.

Proof:
For some constant ¢, suppose S, 1S (A)Sn(A)S 1 = cl,,, ie., S, (A)Sn(A) = ¢S, S,. Then we

n

’

have

K
0=l — > (A = Noo) W + W,y )
k=1
+ (02— A2 W, Wot + o+ (MAK — oAk, 0)Wo s Wa i
+...
+ (Ar A — Ar oM)Wy g Wit + ..o+ (X — Xk o)W Wk (21)
The linear independence assumption implies that ¢ =1, Ay = X109, A2 = X20,..., Ak = Ago. O

3.2 Consistency

For consistency, we need the following assumptions:

Assumption 4:

Denote ¢, = sup,||Whll1, cw = sup,||Whlleo- The sequence {W,} satisfies maz{cy,cy} < 00,
i.e., it’s uniformly bounded in both row and column sum norms. O denotes a compact parameter
space for A and assume that Ao belongs to the interior of ©x. The sequence {S, 1(A)} satisfies
mazpee, {supy S, (A)]los, sup,, |1, T (A1} < oo.

Assumption 5:
Elements of X,, have uniformly bounded constants. Or, if one wants to assume that X, is
stochastic, then max—1.... ,Lsupn7iE|a:i7l|4+” < oo for some n > 0; and X,, and u, are independent.

. ’ . . .
Also, lim, 00X, X exists and is nonsingular.

Assumption 6:

The parameter space © of 0 is compact. The true value 0y belongs to the interior of ©.

Assumption 7:
u; R (0,08) with 0§ > 0, and sup,, ;E |u;|**" < oo for some 1 > 0.

Assumption 8 (Identification):

At least, one of the two conditions holds:
(i) S8 (MN)Sn(A)S; 1 is not proportional to I, when A # Ao;

11



(i) lzmnﬁoon (GniZnpo, -, Gn,Kanoo)/B;LBn(Gn’lanoo, s Gn.k Zynpo) exists and is non-

singular.

With global identification (Assumption 8), it suffices to show that supycg ;- LinL,(0) — ElnL,(9)| &

0 and the uniform equicontinuity of {W}nzl. Then, we have:

Theorem 1:
Under Assumption 1-8, the QMLE of 0 is consistent.

Proof:

With global identification (Assumption 8), it suffices to show that supyeg = [In Ly, () — Eln Ly, (6)) S

ElnL,(0)
n }n:17

0 (uniform convergence) and the uniform equicontinuity of { then we can get consis-

tency.

Proof of the uniform convergence:

Denote

V(A ) = Helig
~ K ~ — ~
= HoYn — Y MHoWo kYo — HoZpp
k=1

K
=V = > (% = Me0) HaWn Yo — Ha Zn (0 — 0)
k=1
where ‘7n = ‘7n (AOa 900)'

Then we have
?mwvmw

K
V.V, + Z Mk = ko) (Ha W kYn) Z Mk = M 0) Ha W 1Yo

N»—A

(o —00) (HaZn) HoZun(p — 00) + 2> (M = Meo) (HeWo i Yn) HaZn (9 — ¢0)
=1

K
—2> " (A = Ako) (HaWo i Yn) Voo = 2(p — @0) (H Zn) Vi (22)
k=1

Using HoWy 1Y = HaGok Zngo + HaGr 1 Ve, for Vi, ks = 1,..., K, we have

(ﬁGWn,klyn)/(ﬁGWn,kQYn)
:(ﬁGGn,kl Zn@())/(ﬁGGn,kQZnSOO) + (ﬁGGn,kl Vn)/(ﬁGGn,kan)
H(HG Gy Znpo) (HaG, Vi) + (Ha Gk, Va) (Ha Gy Zao) (23)

12



Under Assumptions 4 - 8, note that EI/GI?G = ﬁg, for any n x n non-stochastic uniformly

bounded matrices Py, and Ps,,

(24)

~—

1 ~ r, o~ 1 =~ 2 1
E(HGPLILZ'IL) (HGPQnZn) - E;(HGpann) (HGPQTLZH) = Op(%)
1~ PO 1~ Lo 1
E(HGPInZn) (HGPQnVn) - EE(HGPLILZ?L) (HGP2nVn) = Op(%)
1

n

Sl-

~ ~ o~ ~ 1 ~ ~ , ~
(HGpann) (HGPQ'rL‘/n) - EE(HGP}VL‘/H) (HGPQnVn) - Op(

where EL(HgP1,Z,) (HgPanZn) is O(1), EX(HgPinZy) (Ha Py Vi) is O(F=), BEX(HqPL V) (HePonVy)
is O(1). Since A and ¢ are bounded in O, we have %V;(A, )V (A, @) — E%\Zl(A, )V (A, ) &0

uniformly in 6 in ©. Note that

1 1 1 1 1 ~ ~
—InL = ——In2r—-lno?+ —1 AN ——V (A A
I Lo(0) = 3 In2r — 1o+~ In[Su(A)] — o Va(A @) V(A ¢)
since o2 is bounded away from zero in ©, then
1
SUPgeo In L, (0) — Eln L, (60)]
) 1 1~ A oV (A 1~ A OV (A
=SUPgco —@(ﬁvn( o) Val #P)—Eﬁvn( ) V(A )
20 (25)

Proof of the uniform equicontinuity:
Since V,,(A, @) = HgSn(A) Sy Znwo — Hg Zne + HaSp(A)S; g, , we have

]_~/
E-V,
n

n

_ 1~ _ . _
(A, ) Va(A @) = EE[HGSH(A)SJIZMPO — HgZny) [HGSn(A)SEIZnSOO — HaZy )

Term 1

B CACAISEAINE

Term 2

2 - o~ _
+ HE[H@Sn(A)SngngDQ — HgZn| [HaSn(M)S; 1V, (26)

Term 3

Term 3 is a polynomial function in 6, © is bounded, then Term 3 is O(in) uniformly in 6 in

©. Term 1 is equivalent to

13



’

zZ 7,

n

wE

Z;LGn,KZn

Z;lGn,l Zn

(Gn,KZn)/Zn
(Gn,KZn)/Gn,IZn

(Gn,IZn)/Zn
(Gn,IZn)/Gn,IZn

(Gn,,lZn)/Gn,KZn (Gn,KZn)/Gn,KZn

where w = (cpl — 0y AL —
Using S, (A)S,; ! =1, — (\

functions of 6. To show {

)\1’0, -

— )\170)Gn71 — .. —
ElnL,(6) }00
n n=1»

EJ,

JAK — )\K,o)
(Ax — Ak ,0)Gn.x. Term 2 are all polynomial

we need four sufficient conditions:

(a) In o2 is uniformly continuous, which is satisfied because o2 is bounded away from zero in ©;

(b) In|S,(A)] is uniformly equicontinuous. Note L In[S,(A1)|—2 In|S, (A2)| = 2tr(W,, S 1 (A))(Ae—
A1), where A lies between A; and As. As maxace, {sup,||S; 1 (A)]|s,sup,||S; t (A1} < oo,
Ltr(W,,S,71(A)) is bounded, the condition is satisfied;

(¢) w EJyw is uniformly equicontinuous since ¢ and A are bounded and E.J, is O(1);

2 ’ ’

(d) o2(A) = 22tr(S, 1S, (A)S,(A)S, 1) is uniformly equicontinuous. Note that

o (A2) — oy (A1)

ot —1¢ -1 7 ~1¢ -1
IO A (G 4 Gak) Y = A A = 200)t2(G, 1 Gonr)
=] 2 , > ;

k=1 k=1
43 30 (UM = NN Ak o = X))+ Mo = MGy Grie)]
n
ki1=1ko=1
by using S, (A)S;t = I, — (M1 —A0)Gni—...—( Ak —Ak,0)Gn k. Since forany k= 1,..., K; k; =

.,K;kz = 1,...,

K, Ghp, Gn G, and Gn len,kQ are uniformly bounded, then o2(A) is

uniformly equicontinuous. O

3.3 Asymptotic Distribution of the QMLE

To derive the asymptotic distribution, first, we need to decompose the first order derivatives (eval-

uated at true parameter values) as ﬁmn gg(eo) = ﬁln L%Q)(e") — Kn, where
— S trl(HgHe)Gaal + Tiguwn,lm’(ﬁ;;ﬁc)ud
1 LY (6,) o~ o~
% 00 v [(HoHg)Gn, k] + %*[( nKY) (HoHe)un] (28)
Sk 2 e
\%%tr(H He) + Tr3eT u,(Hy He)un,



and

Trtr((In — HgHe)Gh,1]
1~ ) L
ﬁAn = | Ftrl(ln = HeHe)Gr k]
0

The second order conditions are as follows:

) for kl,kg = ].

%gi@:) = (L Ha)G2 ) - Uig(wmkyn)/(E'GFIG)(WWY,L),for k=1,....K
m = ta[(HLHE) Gy Coy)] — %(kalY ) (HoHe)(Wap,Y,
w _ lg (Wa Yo (M) 2,

%ggo) _ _010 (WosYa) (o He yun

w = 1612 (HgHe)uy,

As HyHg = Hg, the variance matrix of \}ﬁ% is equal to

15
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1 lnLn(QO) ilnLn(Ho)

B(— ——=n\70)
<\/ﬁ o0 vnoo oo )
a1 a2 ... QK Ug%(éml(znsﬁo + HGaO)),Zn n%gtr(én,l)
X G2 ... Q2K c,(z%n(Gn,z(ZmDo + Hga)) Zn, n%,gtr(Gn,Q)
+ % oakk 5 (Guk (ZM, + Hoao)) Zn iz tr(Gh i)
* x .. * ZnZ 0
UOTL
I * * . * * 721;3?1 |
290‘71,
- , _ _ _ ’ apd _ -
bin b2 ... ik ”3’0 (Gn,1> Zn ;;82L (Gn,l (Zntpo + HGCVO)) In+ %tr(Gn,l)
* by ... bog @vecD (én2> 7, 2”038‘; (éng (Znpo + Hgao)) I, + u4200 ioo tr(én,z)
+ | : " : : : ,
* * U bKK ﬁ%ﬁ UeC/D (én,K> Z’” ;;éi (én,K (ZnSpO + HGO‘O)) ln + #4 — 300 tr(én,K)
* k... % 0 2”; [;an
| * x ... * * ”4400_ i"o (n—GQ) |
Qoy,n—26g,n
with
1~ r~ 1 Y ~ ~
app = E(Gn,k(anoo + Hgao)) (Gn,k(Zano + HGa0)> + ﬁ(tr(Gn,anyk) + tr(Gnyk)),
0
1 = r 1 ~ =~ ~ ~
Ak ky = ﬁ (Gn,k1 (ZnSOO + HGQO)) (Gn,k2 (ZnLPO + HGOZ())> + ﬁ (tr(Gn,kl Gn,kz) +tr (Gn,k1Gn,k2>> )
0

2030 = / ~ — 304, /= ~
bk = H3,0 (Gn_’k(chpo + HGao)) veep (Gn,k) + Pao 7] %9 Vecp (Gn,k> VECD (Gn’k)

1
ggn ogn

’

Deyy = %(én,kl(ano + HGaO)) vecp (én,kz) 4 %(Gn ks (Zntpo + Hgao)) vecp (Gn,kl)

0
T (N PR (Y
—— Gr Gy ) 5
+ Uén vecp k1 ) vecp Ko
for V k,k1,ks = 1,..., K, where Gn E= Han ks Lp = = HaZn. (pa,0 — 308 = 0 if u,, are normally

distributed). Note that7 for the multiple networks situation, we have more terms in the above
matrix and need to replace agk, Gk, ky, bkk and by, k, With a(r k) (rk)s G(r1 ks)(ra,ka)s O(r k), (rk) and
b(ri ks)(ro,ka)s Where Vor,ry, o =1, Rand V k, k3, kg = 1,... K.

Now, we need an assumption for the information matrix:

Assumption 9:

16



10%In Ly (00))

Yo, = limp—00X6y.n is nonsingular where g, , = E(— o000

0o

Then, we have

Theorem 2:
With Assumption 1-9, we have /n(6< — 6o) 4, N(0, Z;OngOZ;Ol) where 6 = 0, + E;;&n(én)

Proof:
~ p 5 (v) ~
Based on Taylor expansion, \/n(65 — 6y) = (—%%)_1 : (ﬁw — Ay), where
0,, lies between ¢ and 0y, and \}5%9(9”) \}EW —A,, A, = O(1). First, we show
(v
the asymptotic distribution of \}w Note that \}M generally takes the following
linear-quadratic form:
1 2 ’ 2
S, = mT,ﬂm 2\f Uy Rt — ogtr(Ry)
where T,, = (¢4, ... ,tn)/ is a vector of constants, R,, is an n-dimensional uniformly bounded sym-

metric matrix in both row and column sum (see Assumption 4). S,, can be represented by a single
summation S, f S @i where ¢; 5, = tiu; + 1;(u? — 0F) + 2u; Z _11 r,uu;. We can define
a o-field 7, = o(ug,...,u;) for i = 1,...,n and Fo,, = {¢,Q}, a martingale difference double
array {(¢in, Fin)|l < i < n} can be formulated, then E(g; »|Fi—1,n) = 0. Then we can apply the

martingale central limit theorem to S, US;L 4 N(0,1) as n — oo, and 0 = >_i", E(q},) (rvefer

to Lemma 13 and its proof in Yu et al. (2008)). As ai" is bounded away from zero, we have

1 ol LY (6,) 4

vn 00 N(0, ;)

(v) (v)
where Qg, = lim,, oo, ,, and Qg, , = E(\P“Lagww : ﬁln%e(%))

8*1n L, (9n) 9% 1n L (60)
over— — E000 | 2, 0. By Assumption 4 and the con-

9’ L, (80)  729*InLy(6o) 119°InL,(8,)  9*InL,(6o)
9600’ B ooy | % 0and 7| 9600' 9600" | 50

separately and have the desired result. (For more details, refer to the proof of Theorem 3.2 in Lee

(2004)). Then, by Assumption 9, we obtain (—%%)_ 2001n = 0,(1). As a result, we
finally have \/n(05 — 6o) % N(0, 55, 55), where 85 =0, + X7 A, (0,). O

After deriving the asymptotic distribution of 9};, finally we can investigate the asymptotic dis-

Second, we need to show that 1|

sistency proof, we can establish %|

tribution of the group fixed effects & = (44, ..., 4q)".
Theorem 3:

With Assumption 1-9, when G is fized, mgy grows with n, /Mgy(dg — ag0) 4 N(0,02) for

g=1,...,G. When my is fized, while G grows with n, the limiting distribution of &, doesn’t exist.

17



Proof:
By first order condition of a of the original log-likelihood equation, we have & = Mg lH/Gﬂén.
Then, using S,,(A)S;t =1, + (A1,0 — M)Gna + ... + (Ak0 — Ak )Gn k, We can get

aén = Sn([\n)yn - n@n
= Sn(An)[Sgl(ZnQPO + Hgog + up)| — Zndn

= Zn(po — ¢n) + Haoo + uy
+ (/\1,0 - ;\l,n)Gn,l(Zn%OO + Hgag + Un)

+ ()\K,O - 5\K,n)(;n,l((ZnSOO + HGCV() + un)

Thus,

A0 — 5\1,n
6[ — Qg = MélHlG . |:(an1(271§00 + HGCV()), cony Gn,K(ZnQOO + HGO[())) X R
AK0 — AKn

SDO - an

K
+ (In - Z(Ak - )‘k,O)Gn,k)un
k=1

As proved in previous section, we have 0, — 0y = Op(ﬁ) and elements of (Gn’l(anoo +

Hecao), ..., Gn,x (Znpo + HGaO)) are Op(1). Then, the dominant term of & — ¢y is MalHé;un,

which is equivalent to

1 mi
e D= W

e 2ol WG
where my is the number of individuals in group g, g = 1,...,G. So for each fixed effect, when m,

grows with n, \/mg(&y—ag0) 4N (0,03) and they are independent from each other asymptotically.
However, when m, is fixed regardless of G, the limiting distribution of each fixed effect does not

exist. [
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4 Monte Carlo Simulations

4.1 Basic Settings

In this section, we run Monte Carlo simulations to investigate the finite sample performance of
the QMLE we proposed in Section 2. As we stated before, for computational convenience, A is
estimated by maximizing the concentrated likelihood function @ (A) showed by (12), and other
estimators can then be backed out by (9) ~ (11).

To generate the model, we first simulate the networks among individuals which satisfy our as-
sumptions. In this simulation exercise, we consider the situation when there exist two different
networks among agents, and both of them are row-stochastic nearest neighbor spatial weight ma-
trices. For such a matrix W,, = (w;;,) , we use the procedure provided by LeSage’s econometrics

toolbox”:
1. Generate two random vectors of coordinates as the geographic location for each observation;

2. Find [ nearest neighbors for each observation according to their spatial distances and denote

the corresponding wj;, = 1, otherwise w;;, = 0;

3. Row-normalize W,,.

In our application, we consider two networks W1, and Wy, with [; and l3. The neighborhood
relationships are allowed to overlap between these two networks, i.e. an individual may be another
individual’s neighbor in both networks. For each simulation round, with different sample size, we
do 1,000 times replications with the same spatial weighting matrices which are randomly generated.
For heterogeneity source, we consider two different types of individuals and fix the ratio of the
two types as 3:2. For external regressors, x; is the dummy variable for whether the individual
belongs to the first type, and x5 is a random draw from uniform distribution on [0, 1].
For group settings, we consider two different scenarios as the following:
Scenario 1: fixed number of groups with growing members, 10 groups with n/10 members in each
group
Scenario 2: fixed membership for each group with growing number of groups, 20 members in each
group with totally n/20 groups
For both scenarios, group fixed effects {c,} are set as random draws from uniform distribution on
[0,1]. To compare the performance under different situations, we also consider two different settings
for network density and true parameter values:
Setting 1: I; = 30, [y = 20, \; = (—0.3,0.7) , Aa = (0.5,0.2) , 71 = (=3,2,4,5) , 74 = (—1,2,2,3)
B=(2-6),02=1
Setting 2: I} = lp = 10, A, = (0.6,0.2) , Ay = (—0.3,-0.5), v1 = (1,-2,2,3), 74 = (2, -2,1,3)
B=(-1,3),02=4

/
Y

/
)

7See https://www.spatial-econometrics.com
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We evaluate the performance under both scenarios and settings, with three different sample sizes:
n = 200, n = 500 and n = 1000. Additionally, besides normal distribution, we also evaluate the per-
formance under two other residual distributions: continuous uniform distribution U [—%a, %a]
and rescaled Gamma distribution %a [I"(2.25,2) — 4.5].

4.2 Simulation Results for Scenario 1

Table 1-7 show the performance for Scenario 1 when the number of groups is fixed. Table 1 reports
both the raw estimators and bias corrected estimators for peer effects, which are directly estimated
by the concentrated likelihood approach. For both parameter settings, the average biases are
reduced for all the parameters, and the performance is robust for different residual distributions.

Table 2-7 report the performance for all the parameters except the group fixed effects. For all
the three residual distributions and parameter settings, the average biases shrink quickly as sample
size grows. Meanwhile, the medians of estimates also get closer to the true value. When sample
size is n = 500, the average biases are reduced to be less than 10%.

For standard deviation, the performance is not as good as those of the means and medians.
Although it shrinks with the sample size for all the parameters, when some contextual effects and
effects from own characteristics are relatively small (Setting 2), the standard deviation of their
QMLE may still be large. Thus, our QML method is more suitable to be applied in large samples,

with at least 1000 observations.
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Table 2: Performance of QMLE with Normal Residuals for Scenario 1 (bias corrected, Setting 1)

/

Iy = 30,1, = 20,00 = (—.3,.7,.5,.2,-3,2,4,5,—1,2,2,3,2,—6,1)

A1 A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 V1,2,2

mean | -.3080 .6459 4771  .1703 -2.9758 1.9143 3.8506  5.0424

std | .2957 4017  .1491 1881 1.2585 1.5682 1.5864  1.6049

n=200 med | -.3020 .6510 .4909  .1765 -2.9557 1.9555 3.8881  4.9873
Qoos | 5007 3779 .3837  .0508 -3.7691  .7920 2.7981  3.9536

Qo7 | 1015 9140 5818  .2084 -2.1461 2.9898 4.8867  6.1083

mean | -.3040 .6920  .4910  .1997 -3.0383 2.0239 3.9443 5.0382

std 1349 1589 .0967  .1098 7953 .9020 .8846 1.0497

n=500 med | -3036 .7029 4906  .1993 -3.0354 2.0211 3.9499 5.0599
qoo2s | -.3924 5846 4286 1268 -3.5645 1.4210 3.3669 4.3447

qors | -.2059 8053  .BH66  .2T97  -2.5127 2.6234  4.5561 5.7033

mean | -.3022  .6966  .4983  .1986 -2.9753 1.9833 3.9843  4.9877
std | .0886  .1099  .0582  .0808  .5523  .7596  .6791 9158
n=1000 med | -.3018 .6957  .4983  .1988 -2.9695 1.9802 3.9857  5.0434
Qo5 | --3613 6275 4585  .1439 -3.3755 14531 3.5110  4.3568
Qs | 2501 7764 5396 2543  -2.6044 2.4987 4.4135  5.6429

2
V2,1,1 V2,1,2 72,2,1 72,2,2 B1 B2 o

mean | -1.1083 1.9369 1.9204 2.9682 2.0232 -5.9842  .8782

std | .9235 1.2154 1.4181 1.8862 1.2497  .2650  .0894

n=200 med |-1.0742 1.9447 1.9091 2.9782 2.0683 -5.9780 .8746
Qo5 | -1.6870 1.1365 1.1545 1.7642 1.1596 -6.1538 .8184

qors | -4639  2.6869 2.7309 4.2078 2.8634 -5.8063 .9381

mean | -1.0377 1.9657 1.9665 3.0841 2.0577 -5.9967  .9528

std .5818 7574 .6481 .8949 7765 .1503 .0626

n=>500 med | -1.0185 2.0049 1.9772 3.0837 2.0548 -5.9988  .9525
go.2s | -1.4632 1.4632 1.5259 2.4757 1.5559 -6.0957  .9105

Qo7s | 24434  2.4434 2.4412 3.6533 2.6080 -5.8910 .9941

mean | -1.0083 2.0056 2.0080 3.0047 1.9925 -5.9955 .9766

std .4401 b674 5028 .6253 .6047 1053 .0441

n =1000 med | -.9922 2.0127 2.0177 3.0044 19642 -5.9955 .9782
go2s | -1.3015 1.6439 1.6440 2.5951 1.5913 -6.0671  .9467

qors | -.7036  2.3713 2.3512 3.4209 24010 -5.9294 1.0059
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Table 3: Performance of QMLE with Uniform Residuals for Scenario 1 (bias corrected, Setting 1)

’

Iy = 30,1, =20,0) = (—.3,.7,.5,.2,-3,2,4,5,-1,2,2,3,2, —6,1)

A1 A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 71,2,2

mean | -.3403  .6954 4673  .1694 -.3090 1.9757 4.0018 4.9854

std .2852 3002 1855 .2023 1.3265 1.8731  1.6860 2.5538

n=200 med | -3356 .7039 4848 1751 -3.0027 1.9857 4.0265 4.8883
qoos | -.9234 4987 3439  .0332 -3.9363  .6649 = 2.9022 3.1526

qo7s | -.1416 8987  .5995  .3097 -2.1225 3.2871 5.1690 6.7563

mean | -.3070 .7003  .4932 1899 -3.0021 2.0117 3.9994 4.9259

std 1451 1728 .0827  .1038 7632 9347 9534 1.1365

n =500 med | -3009 .6974 4942 1962 -3.0021 2.0189 3.9870 4.9203
qo.2s | -.4047 5885 4410 1234 -3.4981 1.3816 3.3733 4.2215

qo.7s | --2091 8166  .5532 2604 -2.4786 2.6350 4.5876 5.7306

mean | -.3097  .6967  .4948  .1962 -3.0273 2.0389  3.9692 5.0167

std | .1015  .1208 .0607 .0769  .5240  .7307  .6137 7826

n=1000 med | -.3092 .6951  .4973  .1975 -3.0454 2.0270 3.9514 5.0651
Qoos | --3833 6152 4538  .1428 -3.3810 1.5487 3.5340 4.4457

Qors | -.2400 7773 5374 2461  -2.6530 2.5602  4.3794 5.5571

2
V2,1,1 V2,1,2 72,2,1 72,2,2 B1 B2 o

mean | -1.0306 1.9244 1.9326 2.9914 2.0353 -5.9910 .8781
std | 1.0376 1.3274 1.2179 1.5805 1.3946  .2483  .0644
n=200 med | -.9888 1.9456 1.9478 2.9400 2.0275 -5.9943  .8763
Qoos | -1.7167 1.0285 1.1579 1.9259 1.1003 -6.1571  .8319
qors | -3277 2.8675 2.7664 4.1391 2.9271 -5.8301 .9233

mean | -.9898 2.0003 19831 29619 1.9409 -6.0014 .9538

std .5644 7790 .6859  .9743 .8391 .1496 .0403

n=>500 med | -1.0050 2.0359 1.9642 29753 19610 -6.0063 .9539
qoo2s | -1.3781 1.4977 1.5482 23199 1.3665 -6.1014 .9270

go7s | -.6142  2.5189 2.4179 3.6396 2.4753 -5.9040 .9813

mean | -1.0280 2.0279 1.9935 2.9929 1.9949 -5.9974  .9758

std 4156 5659 5645 7012 .5596 1122 .0282

n =1000 med | -1.0335 2.0565 1.9905 3.0144 2.0141 -6.0006 .9761
go2s | -1.3233 1.6561 1.6056 2.5321 1.6248 -6.0694 .9561

qo7s | -.7428  2.3997 2.3697 3.4702 23765  5.9226  .9942
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Table 4: Performance of QMLE with Gamma Residuals for Scenario 1 (bias corrected, Setting 1)

’

Iy = 30,1, = 20,600 = (—.3,.7,.5,.2,-3,2,4,5,—1,2,2,3,2,—6,1)

A1 A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 1,2,2

mean | -.3075 6952 4836 1743 -2.9908 1.9894 4.0652 4.8682

std 2671 3443 .1580  .2145  1.3715  1.5945 1.6821 2.0365

n=200 med | -3010 .7132 4855  .1777 -2.9647 2.0512 4.1263 4.8639
qo2s | -4800 4855  .3786  .0391 -3.9594  .9993  2.9885 3.5777

qo.7s | -.1141 9156 .5868  .3207  -2.0820 3.0516  5.1341 6.2370

mean | -.3100 .6866  .4836  .1847 -3.0138 2.0017  3.9517 5.0570

std .1504 1840  .0964  .1205 7566 9838 9354 1.1931

n =500 med | -.3081 6905 4886  .1867 -3.0019 1.9717  3.9396 5.0362
go.2s | -.4030  .5651 4244 1033 -3.5148  1.3237  3.3266 4.2818

qors | -.2060 8070  .5496  .2638 -2.5001 2.6913 4.6060 5.8178

mean | -.3051  .6983  .4957  .1943 -3.0355 2.0437 4.0309  4.9834
std | .0928  .1102  .0597 .0745  .4759  .6615  .5683 7448
n=1000 med | -.3043 .6990 .4971  .1943 -3.0297 2.0091 4.0128  4.9968
Qo5 | -.3665 6215 4558  .1475 -3.3469 1.6036 3.6295  4.4954
Qors | --2421 77T 5367 2458 -2.7246  2.5025  4.4031 5.4708

2
V2,1,1 V2,1,2 72,2,1 72,2,2 B1 B2 o

mean | -1.0529 1.9574 19239 2.9911 19878 -5.9944  .8693

std 1.0957 1.2094 1.4193 1.6482 1.4973 2728 1327

n =200 med |-1.0202 1.9566 1.9201 3.0489 1.9423 -5.9969 .8592
qo.2s | -1.7757 1.1504 .9904 1.9369 .9936 -6.1744 .7761

go7s | --3524 2.8310 2.8918 4.1072 29933 -5.8161  .9512

mean | -1.0476 1.9735 1.9457 3.0069 2.0142 -6.0037  .9520

std .6346 8030 .7962  1.0089  .8651 1534 .0952

n=>500 med |-1.0349 1.9682 1.9087 3.0177 2.0034 -6.0014 .9520
go.os | -1.4838 1.4230 1.3897 2.3471 1.4522 -6.1086 .8854

go.7s | -.6007 25177 24839 3.6681 2.5790 -5.8948 1.0124

mean | -1.0144 1.9875 1.9765 3.0149 2.0126 -5.9957  .9804

std 4233 5106 4627  .6549 .5832 .1090 .0688

n =1000 med | -1.0022 1.9744 1.9739 3.0470 2.0119 -5.9987 .9786
go2s | -1.2997 1.6381 1.6769 2.5719 1.6270 -6.0701 .9314

qo7s | -.7287  2.3616 2.2893 2.4217 2.4217 -5.9201 1.0270
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Table 5: Performance of QMLE with Normal Residuals for Scenario 1 (bias corrected, Setting 2)

’

lh =1, =10,60 = (.6,.2,—.3,—.5,1,-2,2,3,2,-2,1,3,—1,3,4)

Al A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 V1,2,2

mean | .6055  .1933  -.2360 -.4010 1.0165 -1.9192 1.9525  3.1740

std | 1971  .2664 2710  .3605 1.6550 2.4120 2.2392  3.5716

n=200 med | .6207 .2048 -2334 -4071 1.1091 -1.7020 2.0673  3.1570
Qoos | 4855  .0373  -.4178 -.6370 -.0923 -3.5573  .5263 7570

Qors | .TAT2 3832 -.0466 -.1642 2.1371 -.3455 3.4536  5.5290

mean | .5987  .1997  -.2877 -.4613 1.0004 -1.9885 1.9989  2.9464

std | .1036  .1332  .1609  .2197  .9191  1.2391 1.1534  1.6120

n=500 med | .6051 .2024 -.2895 -.4596 1.0067 -2.0598 2.0111  2.9712
Qo5 | 5344 1199  -3971 -.6018  .3644 -2.8669 1.1939  1.9045

Qo5 | 6654 2849  -1846 -.3120 1.6551 -1.1459 2.7746  3.9288

mean | .5975 2018 -.2871 -.4971 9630 -1.9671  1.9932 3.0039

std 0731 .0915 1107 11392 .6612 9867 7927 1.2081

n = 1000 med .6048 2035 -.2892  -.5006 1.0005 -2.0233 2.0048 3.0036
q0.25 .5503 1421 -3610 -.5878 5260  -2.6514 1.4266 2.1789

q0.75 .6445 2664 -.2130 -.4055 14271 -1.3380 2.4949 3.8154

2
v2,1,1 72,1,2 72,2,1 72,2,2 B1 B2 o

mean | 2.1339 -2.1068 1.3460 2.6500 -.9285  3.0241 3.5180

std | 1.6491 2.3739 2.0216 2.1542 4.0403 5554  .3756

n=200 med | 21393 -2.0926 1.3579 2.5100 -.8684  3.0217 3.4931
Qo2s | 1.0348 -3.7728 0100 5121 -3.8310 2.6211 3.2570

qors | 3.2257  -.4490 2.6533 4.8468 1.7462  3.4169  3.7548

mean | 1.9953 -2.0778 1.0887 2.9052 -.8939  3.0078 3.8014

std 8764  1.0856 1.2502 1.4767 2.1761 3191 .2439

n=>500 med | 1.9904 -2.0645 1.1071 29271 -7851 3.0106 3.8116
goos | 1.4083 -2.7925 .2590 19178 -2.2734 2.7809 3.6370

go7s | 2.6191 -1.3324 1.9467 3.8772 4917 3.2277  3.9652

mean | 2.0479 -2.0800 .9966 3.0007 -1.0019 3.0245 3.8998

std | .5926  1.0020 .7977 1.2091 1.4969  .2182  .1749

n=1000 med | 2.0567 -2.1162 1.0231 3.0047 -1.0221 3.0181 3.8893
Goos | 1.6522 -2.7632 4297 2.1531 -1.9770 2.8800 3.7825

Gors | 244511 -1.3985 1.5245 2.7923  .0528  3.1725 4.0246
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Table 6: Performance of QMLE with Uniform Residuals for Scenario 1 (bias corrected, Setting 2)

’

lh =1, =10,60 = (.6,.2,—.3,—.5,1,-2,2,3,2,-2,1,3,—1,3,4)

Al A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 71,2,2

mean | .5940  .2023  -.2774 -.4422 9060 -1.9537 1.9988 3.0043

std | .1919  .2390 2753  .3090 1.4634 2.4911 2.0735 3.1673

n=200 med | .5991 2126 -2798 -.4282 9808 -1.9174 2.0583 2.9532
Qoos | 4623  .0490  -.4616 -.6539 -.0158 -3.6430 .5194 7385

Qors | 7291 3706  -.0878 -.2323 1.9149  -.4283  3.4797 5.0076

mean | .6001  .1975 -2749 -4602 1.0107 -2.0010 1.9875 2.9693

std | 1072  .1352  .1625 .2091  .9505  1.3254  .9751 1.6658

n=500 med | .6059  .2052 -.2763 -.4743 1.0436 -1.9952 1.9999 2.8898
Qoos | 5251 1117 -.3830 -.6071  .3560 -2.9189 1.3826 1.8382

Qs | 6799 2896  -.1662 -.3275 1.6529 -1.1046 2.7017  4.1258

mean | .5983  .2024  -.2936 -.4783 1.0191 -1.9360 2.0025 2.9605

std | .0730  .1000  .1103  .1446  .6952  .9972  .8332 1.2086

n=1000 med | .6051  .2067 -.2913 -.4833 1.0289 -1.9486 1.9684 2.9406
Qoos | 5515  .1387  -.3700 -.5753 5471  -2.6199 1.4337 2.1042

Qors | 6498 2769  -.2165 -.3788 1.4931 -1.2480 2.5832 3.8171

2
v2,1,1 72,1,2 72,2,1 72,2,2 B1 B2 o

mean | 2.0697 -1.9757 1.0925 2.8696 -.9115  3.0058  3.5236

std 1.3153  2.6258 1.5687 2.9268  3.2401 4979 2575

n =200 med | 21139 -1.9821 1.1070 2.8259 -.9511 3.0173 3.5149
qoos | 1.2128 -3.7532 .0063  .9085 -3.1388 2.6661 3.3481

go.7s | 29717 -.2329  2.1601 4.8785 1.2507  3.3469  3.7068

mean | 2.0936 -2.0294 1.0561 2.9067 -1.0915 2.9924  3.8100

std 9019 1.5227 8873 1.8312 1.9261 .3160 .1647

n=>500 med | 2.0960 -2.0051 1.0769 2.8952 -1.0802 2.9883 3.8165
goos | 1.4939 -3.0585 .4490 1.6711 -2.4025 2.7856 3.6957

qo7s | 2.7054 -1.0334 1.6542 4.0821  .1046 3.2046  3.9191

mean | 1.9978 -2.0195 1.0353 2.9057 -1.0271 3.0063 3.9004

std .6096 8817 8134 1.1170  1.5558 .2186 1210

n =1000 med | 1.9926 -2.0505 1.0517 2.8754 -1.0318 3.0140 3.9010
go2s | 1.5936 -2.6235 .5042 2.0953 -2.0377 2.8558 3.8181

qo.7s | 2.4007 -1.4208 1.6041 3.6695 -.0076  3.1603  3.9807
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Table 7: Performance of QMLE with Gamma Residuals for Scenario 1 (bias corrected, Setting 2)

’

lh =1, =10,00 = (.6,.2,—.3,—.5,1,-2,2,3,2,—-2,1,3,—1,3,4)

Al A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 1,2,2

mean | .5910 2063 -.2561 -.4463 9686  -1.9384 1.9506 2.7567

std 1851 .2359 2723 .3561  1.4045  2.2364  1.8998 2.7472

n =200 med .6053 2206 -.2449 -4348 1.0151 -2.0041 1.9439 2.5536
q0.25 4796 0579 -4416 -.6873  .0616 -3.4500  .7567 .8920

q0.75 7169 3688 -.0696 -.2012 1.9320 -.4094 3.1793 4.5093

mean | .5992  .2098  -.2810 -.4638 1.0250 -1.9725 2.0355  2.9699
std | .1056  .1389  .1627  .1921  .9057  1.5080 1.1406 1.7682
n=>500 med | .6062 .2172 -2870 -.4579 1.0302 -1.9421 2.0559  2.9248
Qoos | 5296 1201  -.3873  -.5937 4023  -2.9942 1.2420 1.7857
Qs | 6730 .3027 1692 -.3324 1.6549 -.9227 2.8270  4.1612

mean | .5980  .2086  -.2935 -.4873 1.0134 -1.9423 2.0446  2.9641

std | .0671  .0931  .1065 .1365  .6477  .9949  .8373 1.1726

n=1000 med | .6016 .2097 -.2898 -.4873 1.0239 -1.8973 2.0674  2.9955
Qoos | 5566  .1490  -.3647 -.5856 5872  -2.6284 1.4925  2.1381

Qors | 6441 2720 -2190 -.3979 1.4454 -1.2744 2.6090  3.7976

V2,1,1 V2,1,2 V2,2,1 V2,2,2 b1 B2 o?
mean | 2.0378 -2.2064 1.1276 2.8142 -1.0054 3.0184 3.5441
std 1.6758 2.2132 1.8930 2.4518 4.1456 .4986 .5454
n = 200 med | 2.0250 -2.3017 1.1220 2.7623 -.9857  3.0098 3.4792
qo.25 9669  -3.6629 -.1304 1.2000 -3.8386 2.6743 3.1895
qo.75 | 3.1943  -.7494 24922 43763 1.6749 3.3660 3.8594
mean | 2.0571 -2.0698 1.1260 2.9358 -.8917  3.0113  3.7960
std 9223 1.5855 1.0089 1.8054  2.4528 .3194 .3821
n = 500 med | 2.0551 -2.0770 1.1674 2.9192 -.8977  3.0199 3.7764
Qo.2s | 14233 -3.1660 .4609 1.7033 -2.5276 2.7916 3.5149
qo.7s | 2.7189  -.9551 1.8025 4.1032 .6982 3.2219  4.0336
mean | 2.0450 -2.0383 1.0161 2.9344 -1.0167 3.0192 3.8805
std 5758 .9023 7290 1.1407  1.4420 .2207 .2561
n=1000 med | 2.0635 -2.0375 1.0138 2.9162 -1.0762 3.0264 3.8845
Qo.os | 1.6454 -2.6233  .5537  2.1555 -1.9912 2.8743 3.7105
Qo.rs | 2.4192 -1.4539 1.5216 3.6758 -.0044  3.1690 4.0629

4.3 Simulation Results for Scenario 2

Table 8-14 show the performance for Scenario 2 when the membership of each group is fixed.
Table 8 reports both the raw estimates and bias corrected estimates for peer effects, which are
directly estimated by the concentrated likelihood approach. Unlike the results showed in Table 1

for Scenario 1, the performance of our bias correction method seems to depend on the value of true
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parameters and the networks. For Setting 1 with more dense networks, the bias corrected QMLE
dominate the raw estimates on average bias level for all the peer effects. However, for Setting 2
with relatively more sparse networks, although the performance of the bias corrected estimators
improves as sample size gets larger, for A2 1 and A 2, the performance does not dominate the raw
estimates. The raw estimates overestimate the peer effects through W5, in general and the bias
correction method tends to over shoot and results in underestimated QMLE. But in general, when
sample size is large enough (n > 1000), the average bias level is less than 10% which is acceptable.

Table 9-14 report the performance for all the parameters except group fixed effects. The perfor-
mance for the mean, median and standard deviations are similar to those under Scenario 1. Average
biases for A2 1 , A22 and o? are slightly larger for Setting 2, but are still acceptable. For similar
reasons, we suggest to use our method when one has a relatively large sample size in order to make

more precise inference for contextual effects.
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Table 9: Performance of QMLE with Normal Residuals for Scenario 2 (bias corrected, Setting 1)

/

Iy = 30,1, = 20,00 = (—.3,.7,.5,.2,-3,2,4,5,—1,2,2,3,2,—6,1)

A1 A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 V1,2,2

mean | -.3151 6843 4827 1710  -3.0693  2.1132  3.9907 5.0279

std .2039 2257 1387 1714 1.4607  1.7738  1.3169 1.6850

n=200 med | -3080 .6845 4925 1761 -3.0318 2.0239 4.0070 4.9817
qo2s | -4440  .5346  .3902  .0591 -4.0569  .7870  3.0893 3.9415

qo7s | -.1739 8410  .5746  .2909 -2.0886 3.3251 4.8765 6.1599

mean | -.3006 .6981 4885 1925 -2.9721  2.0032  3.9948 5.0405

std 1521 1520 .0972 1114 7803 1.0120  .9241 1.2421

n=>500 med | -.3014 .7004  .4890 1941 -2.9727  2.0033  4.0262 5.0311
go.2s | -.3990 .5982 4252 1207 -3.4898  1.3241  3.3486 4.1477

qo.7s | --1973 .7964 .b544 2664 -2.4734  2.7361 4.6130 5.9357

mean | -.2066  .6936  .4960  .1908 -2.9779 2.0110 3.9447  5.0328
std | .1052  .1327 .0676  .0884  .5724  .7342  .7154 9152
n=1000 med | -.2947 6956  .4998  .1911 -2.9557 2.0294 3.9571  5.0022
Qoos | --3682 6054 4550  .1301 -3.3517 1.5196 3.4627  4.4230
Qors | -.2275 7846 .5402 2507 -2.5899  2.4837 4.4090  5.6288

2
V2,1,1 V2,1,2 72,2,1 72,2,2 B1 B2 o

mean | -1.0615 1.9640 1.9956 2.9940 2.0229 -6.0010 .8820

std | .8970 1.2285 .8485 1.5082 1.3464  .2648  .0966

n=200 med |-1.0520 1.9146 2.0095 2.9213 2.0457 -5.9976 .8782
Qo5 | -1.6526 1.1060 1.4127 1.8896 1.0685 -6.1794 .8114

qo7s | -4245  2.7959  2.5833  4.0192 2.9467 -5.8204  .9466

mean | -1.0095 1.9882 19614 3.0118 2.0001 -5.9954  .9207

std 6341 8600 7712 .9365 .8246 1641 .0588

n=>500 med | -9945 19868 1.9703 3.0565 1.9744 -5.9920 .9202
qo.2s | -1.4225 1.4287 1.4414 2.3867 1.4553 -6.1071  .8767

go7s | -.9814  2.5940 2.4846 3.6351 2.5571 -5.8879  .9617

mean | -1.0167 2.0156 1.9820 2.9677 1.9499 -5.9904 .9353

std .3982 5409 5117 7276 .5803 1121 .0445

n =1000 med | -1.0056 2.0174 2.0115 2.9729 1.9580 -5.9873 .9341
go2s | -1.2836 1.6293 1.6502 2.4512 1.5572 -6.0650  .9062

qo7rs | -.7359  2.3630 2.3221 3.4409 2.3424 -5.9130 .9638
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Table 10: Performance of QMLE with Uniform Residuals for Scenario 2 (bias corrected, Setting 1)

/

Iy = 30,1, = 20,00 = (—.3,.7,.5,.2,-3,2,4,5,—1,2,2,3,2, —6,1)

A1 A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 71,2,2

mean | -.3254  .6879 4817  .1628 -3.0851 2.1024 4.0201 4.9982

std 1816 2617 .1696  .2345  1.2399  1.5377  1.4947 2.1480

n =200 med | -.3261 6897 4903 1747 -3.1151  2.1279  4.0263 5.0040
qo2s | -4480  .5125  .3752  .0043 -3.9277 1.0068  2.9560 3.5721

qo.7s | --1961 8711 D987 3292 -2.2307  3.1203  5.0106 6.4308

mean | -.3074  .6933 4957  .1921 -2.9893 1.9857 3.9987 5.0566
std | .1351  .1655 .0872  .1108  .9008  1.1180 1.0129 1.4476
n=500 med | -.3011 .6953 .4970  .1911 -2.9710 2.0070 4.0078 5.0560
Qo5 | --3952 5797 4370 1163 -3.6123 1.2297  3.3149 4.1449
Qors | --2160  .8054 5580 2680 -2.3574 2.7627  4.6947 5.9601

mean | -.3059  .7038  .4981  .1969 -3.0033 1.9945 3.9803 4.9875
std | .0866  .1120 .0622  .0723  .5542  .7569  .7392 9681
n=1000 med | -.3041 .7068  .4990  .1993 -2.9663 1.9888  3.9637 5.0005
Qoos | --3654  .6288  .4578 1500 -3.3726 1.4564 3.4691 4.3098
Qors | -.2471 7786 5398  .2472  -2.6232 2.4851  4.4745 5.6174

2
V2,1,1 V2,1,2 72,2,1 72,2,2 B1 B2 o

mean | -1.0511 2.0617 1.9561 2.9572 1.9508 -6.0059 .8802
std | 1.0013 1.2686 1.1349 1.7722 1.3544 2563  .0662
n=200 med |-1.0399 2.0570 1.9570 2.9776 1.9225 -5.9997 .8810
Qoos | -1.7364 1.2321 1.2038 1.8087 1.0343 -6.1890 .8351
qors | 3688 2.8798 2.7451 4.0525 2.9005 -5.8296  .9246

mean | -1.0361 1.9941 19730 3.0287 2.0419 -6.0033  .9215

std .5616 7601 7396 .9239 .8322 1661 .0399

n=>500 med |-1.0397 19789 19737 3.0423 2.0987 -6.0000 .9209
go2s | -1.4161 1.4722 1.4701 2.4025 1.4848 -6.1163 .8940

go.7s | -.6607  2.5195 2.4519 3.6562 2.6204 -5.8976  .9499

mean | -1.0081 1.9820 1.9861 2.9890 1.9968 -6.0046  .9352

std 4712 5695 5138 7095 .5848 .1099 .0285

n=1000 med | -.9993 1.9677 2.0107 2.9860 1.9873 -6.0079  .9352
qo.2s | -1.3424 1.5973 1.6465 2.4930 1.5932 -6.0801  .9150

qo7rs | -.6710 2.3796 2.3280 3.4916 2.4194 5.9321  .9547
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Table 11: Performance of QMLE with Gamma Residuals for Scenario 2 (bias corrected, Setting 1)

Iy = 30,1, =20,0) = (—.3,.7,.5,.2,-3,2,4,5,-1,2,2,3,2, —6,1)

A1 A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 1,2,2

mean | -.3174  .6647 4718  .1829 -3.0175 2.0976 4.0353 4.9178

std .2532 2775 1530 1837 1.4360  2.0822  1.9943 2.6931

n =200 med | -3153  .6682  .4757  .1825 -2.9648 2.0860 3.9564 4.9086
qo.2s | -.4761 4883 3699  .0628  -3.9524  .6993  2.6779 3.0477

qo7s | -.1478 8475 5805  .3023 -2.0840 3.5060  5.3434 6.7846

mean | -.3077  .6950 4899  .1934 -2.9904 1.9898  3.9853 4.9902

std 1268 1481 0847 1127 6133 .8885 7666 1.0967

n =500 med | -.3055 6946 4923 1957  -2.9779 1.9846 3.9741 4.9906
go2s | -.3857  .5924 4363 1242 -3.4228 1.3839 3.4335 4.2622

qors | -.2260 7996  .5448 2633 -2.5701 2.6118 4.5514 5.7389

mean | -.3011  .6988  .4982  .1985 -3.0243 2.0235 4.0153 4.9751
std | .0933  .1278 .0614 .0836  .5596  .7279  .7391 1.0403
n=1000 med | -.2957 .7057 .5004 .1992 -3.0140 2.0153 4.0321 4.9961
Goos | -3642 6051 4562  .1430 -3.4106 1.5079 3.5191 4.2496
Qors | -.2416 7899 5407 2567 -2.6702 2.5181 4.5318 5.7034

2
V2,1,1 V2,1,2 72,2,1 72,2,2 B1 B2 o

mean | -1.0579 2.0747 1.9862 2.9419 1.9294 -5.9880 .8831
std | 1.0629 1.3194 1.3342 1.5989 1.3943 2674  .1366
n=200 med | -.9958 2.0886 1.9771 2.9480 1.9469 -5.9906 .8691
Qoos | -1.7923 1.2108 1.0705 1.9000 1.0439 -6.1648  .7862
Qors | -2862 2.9776 2.8443 4.0161 2.9098 -5.8078  .9683

mean | -1.0354 2.0157 1.9515 2.9908 1.8734 -5.9960 .9204

std 5781 9326 7873 1.0959  .8894 .1583 .0882

n=>500 med | -1.0386 2.05642 1.9444 3.0023 1.9496 -5.9980 .9177
qo2s | -1.4274 1.3648 1.4123 2.2204 1.3456 -6.1061 .8584

qo7s | -.6614  2.6789 2.5416 3.7369 2.5787 -5.8885  .9752

mean | -.9985 1.9933 2.0047 3.0066 2.0078 -6.0009  .9356

std 4419 830 5445 7104 .6067 A111 .0659

n =1000 med | -.9724 2.0060 1.9920 2.9843 2.0255 -6.0050 .9349
go.2s | -1.2928 1.5890 1.6288 2.5405 1.5967 -6.0726  .8878

qo7rs | -.6818  2.3818 2.3848 3.4964 2.3909 -5.9261 .9769

32



Table 12: Performance of QMLE with Normal Residuals for Scenario 2 (bias corrected, Setting 2)

’

lh=1,=10,00 = (.6,.2,—.3,—.5,1,-2,2,3,2,—-2,1,3,—1,3,4)

Al A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 71,2,2

mean | .5839 2014 -.2626 -.4531 9176 -1.8879  2.0046 3.0055

std .1649 2112 2441 2833 14518  2.1314 1.7818 2.5138

n =200 med .5956 2155 -.2525 -.4526 1.0098 -2.0374 1.9667 2.9081
q0.25 4813 0736 -4183 -.6467 -.0316 -3.2992  .9077 1.2318

q0.75 6973 3483 -.0997  -.2486 1.9439 -.4596  3.2523 4.6239

mean | .5993  .2079  -.2687 -.4692  .9915 -1.9532 2.0166 2.9959

std | .0950  .1471  .1493 2120  .9280  1.3854  1.3247 2.1520

n=500 med | .6048 2146 -.2702 -4721  .9980  -2.0168 3.0257 2.1554
Qo2s | 5389 1052  -.3690 -.6115  .4024 -2.9384 1.1157 1.5734

Qo5 | 6666 3133  -.1682 -.3225 1.5992 -1.0275 2.9226 4.4140

mean | .6027 2087 -.2780 -.4767 9740  -2.0167 1.9968 2.9928

std 0782 1037 1122 11386 6785 .9684 7681 1.2115

n =1000 med .6060 2096 -.2829 -4788 9718  -2.0145 2.0075 2.9608
q0.25 .5481 1375 -.3562  -.5695 5125 -2.7283  1.5058 2.1495

q0.75 .6576 2782 -2014 -.3588 14376 -1.3506 2.5100 3.8102

2
v2,1,1 72,1,2 72,2,1 72,2,2 B1 B2 o

mean | 2.1086 -2.0787 1.1773 2.8766 -.9089  2.9814  3.5341
std | 1.3879 2.2844 1.9446 2.5703 3.1769  .4780  .3794
n=200 med | 2.1809 -2.1548 1.1897 2.8986 -.7939  2.9691 3.5167
Qoos | 1.2124 -3.6398 -.1450 1.1396 -3.0565 2.6807 3.2615
Qo5 | 3.0897 -5616 2.4986 4.5463 1.1900 3.3078  3.7708

mean | 2.1264 -2.0933 1.0767 2.9758 -.9903  2.9999  3.6865

std 8471 1.3049 1.2596 1.8329 2.5311 .3243 .2488

n=>500 med | 2.1554 -2.0905 1.0866 2.9797 -9170  3.0006 3.6760
goos | 1.9588 -2.9378 2145 1.6858 -2.6178 2.7849  3.5237

go7rs | 2.6735 -1.2532 1.9409 4.2828  .6884 3.2282  3.8502

mean | 2.0817 -2.0581 1.0909 2.9012 -.9421 3.0189 3.7392

std 6732 .9602 6879 1.1371  1.6235 2333 1728

n =1000 med | 2.0581 -2.0712 1.0823 2.9266 -.9985 3.0175 3.7380
go2s | 1.6463 -2.7488  .6160 2.1385 -1.9822 2.8619 3.6284

qors | 2.5329 -1.3980 1.5791 3.6783  .1520 3.1743  3.8574

33



Table 13: Performance of QMLE with Uniform Residuals for Scenario 2 (bias corrected, Setting 2)

/

lh =1, =10,60 = (.6,.2,—.3,—.5,1,-2,2,3,2,-2,1,3,—1,3,4)

Al A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 71,2,2

mean | .5918 1901 -.2656  -.4581 9096  -1.8560 1.9252 2.9467
std .1939 .2203 2493 3018  2.0125  2.0426  1.5648 2.8164
n =200 med .6138 2053 -.2659 -.4545 1.0069 -1.8783 1.9855 2.8763

4o.25 4723 0485  -4241 -.6635 -.4099 -3.2707 .8723 1.0080
q0.75 7245 3452 -.0987 -.2619 22302  -.4492  3.0266 4.8484
mean | .6055 2049 -2699 -.4569 1.0162 -2.0153 2.0363 2.9826

std 1041 1353 1554 2013 1.0225  1.2521 1.0534 1.7014
n=>500 med .6145 2113 -.2658 -.4544 1.0513 -2.0843 2.0610 2.9821
q0.25 5343 1186 -.3752  -.5920  .3305  -2.9219 1.3229 1.7808
q0.75 6783 2980 -.1693 -.3255 1.7033 -1.1488 2.7800 4.1709

mean | .6040 2070 -.2754  -.4761 9980  -1.9462 2.0113 2.9882

std 0732 .0886 1121 1335 .6680 .9598 .8353 1.1072

n = 1000 med .6048 2117 -2725  -.4759 1.0286 -1.9664 2.0289 2.9668
q0.25 5581 1480  -.3477  -.5605 5744  -2.5604 1.5063 2.2559

q0.75 6573 2680  -.2077  -.3890 1.4828 -1.3150 2.5600 3.7620

2
v2,1,1 72,1,2 72,2,1 72,2,2 B1 B2 o

mean | 2.0122 -2.0884 1.0700 2.9585 -1.0291 3.0012 3.5318
std | 1.3354 2.1269 1.8286 2.7592 3.3595  .5628  .2630
n=200 med | 2.0087 -2.0899 1.1152 3.0405 -1.1427 3.0164 3.5375
Qoos | 1.1115 -3.4610 -.1045 1.0232 -3.3260 2.6356  3.3585
Qors | 2.9521  -.6803 2.2514 4.8781 1.2655 3.3684  3.7032

mean | 2.0577 -2.0978 1.1208 3.0365 -.8452  2.9978  3.6885

std 1.0072  1.1759 1.2495 1.4664 2.1465 3324 1672

n=>500 med | 2.0642 -2.0934 1.1626 3.0018 -.8014  3.0059 3.6856
qoos | 1.3344 -2.8947 2730 2.0508 -2.2436 2.7716  3.5733

gors | 2.7503 -1.3022 1.9953 4.0651  .6278 3.2191  3.8033

mean | 2.0564 -2.0158 1.0569 2.9611 -1.0403 3.0046 3.7410

std 6232 1.0171  .7600 1.0586 1.4719 .2108 171

n =1000 med | 2.0835 -2.0045 1.0604 2.9908 -9799  3.0009 3.7418
goos | 1.6432 -2.7013  .5558 2.2173 -1.9985 2.8653  3.6597

qors | 2.5136 -1.3223 1.5588 3.6685 -.0858  3.1488  3.8242
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Table 14: Performance of QMLE with Gamma Residuals for Scenario 2 (bias corrected, Setting 2)

’

lh =1, =10,60 = (.6,.2,—.3,—.5,1,-2,2,3,2,-2,1,3,—1,3,4)

Al A12 A21 A2,2 Y1,1,1 Y1,1,2 1,21 1,2,2

mean | .5887  .2031  -.3068 -.4000 1.0026 -2.0184 2.0154 3.1025

std | 1962  .2450  .2846  .3591  1.6946 2.6374 2.1178 2.9387

n=200 med | .5991 2146 -.3013 -.3930 1.1019 -2.0195 2.0777 3.0808
Qoos | 4669 0484  -.4923 -.6273 -.1585 -3.7195 .6858 1.1298

Qors | 7281 3724 -.1073  -.1652 2.2410  -.1708  3.4678 5.0518

mean | .5919 2065 -.2614  -4703 9554  -1.9856 2.0380 3.0512

std .1054 .1409 .1601 2111 1.0111  1.5751 1.1938 1.9597

n=>500 med 5971 2137 -.2544 -.4666 9788  -1.9977 1.9983 3.0710
q0.25 .5258 1116 -.3636  -.6164  .3148  -3.0373 1.2601 1.6701

q0.75 .6651 3068 -.1573  -.3260 1.6291  -.9459  2.8206 4.3658

mean | .6044  .2086  -.2799 -.4739 1.0038 -2.0431 2.0561 2.9433

std | .0701  .0987  .1083 .1353  .6880  1.0303  .8973 1.2742

n=1000 med | .6089  .2127 -2765 -.4744 1.0245 -2.0136 2.0900 2.9159
Qoos | 5600  .1443  -.3553 -5636  .5625 -2.7358 1.4623 2.1296

Qors | 6531 2775  -2078 -.3821  1.4722 -1.3509 2.7052 3.7960

2
v2,1,1 72,1,2 72,2,1 72,2,2 B1 B2 o

mean | 2.0525 -2.0310 1.2970 2.6537 -.6421  3.0251 3.5102

std | 1.6251 2.5823 1.7897 3.3350 3.4801 5223 .5529

n =200 med | 2.0889 -2.1437 1.4184 2.5535 -.5428  3.0395 3.4769
qo.2s | 1.0064 -3.7498 1990 .2913 -3.0189 2.6804 3.1180

go.7s | 3.2134  -.3665 2.5193 4.9282 1.7693  2.2746  3.8547

mean | 2.1256 -2.1281 1.0653 2.8783 -.9531  3.0108 3.6955

std 9334 14631 1.1594 1.8699 2.5994 .3453 3627

n=>500 med | 2.1594 -2.1340 1.1200 2.8556 -.9285  3.0239 3.6757
goos | 1.4968 -3.1059 3177 1.6368 -2.7728 2.7700  3.4488

gors | 2.7069 -1.1189 1.8640 4.0512  .7866 3.2473  3.9209

mean | 2.0552 -2.0284 1.1169 2.9000 -.9425 3.0125 3.7392
std | .6823  .9342 8280 1.1654 1.6763  .2309  .2582
n=1000 med | 2.0785 -2.0161 1.1539 2.8661 -.8790  3.0050 3.7390
Qoos | 1.5955 -2.6586 .5672  2.0942 -2.0247 2.8503  3.5658
Qo7s | 2.5368 -1.4423 1.6601 3.6846 .1855  3.1645  3.9023
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5 Application: Heterogeneous Peer Effects in Chinese Stu-
dent Academic Achievement

5.1 Data Description

The Chinese pre-university education system generally includes 6 years in primary school (Grade 1
to 6), 3 years in junior high school (Grade 7 to 9), and 3 years in senior high school (Grade 10 to 12)
before college. To understand the heterogeneous peer effects on students’ academic achievement,
we focus on the junior high school period, as required by the nine-year compulsory education in
China, this is the phase that students must complete in order to decide whether to continue their
education in senior high school. Upon the beginning of Grade 7, i.e., the first year of junior high
school, students are assigned to classrooms either randomly or non-randomly® and then usually
stay in the same class throughout the 3 years of junior high school. Students are required to take
3 core subjects — Chinese, mathematics, and English — and a set of subsidiary subjects. A head
teacher, which can be one of the core-subject teachers, is responsible for students’ social lives and
providing feedback to students and their parents about academic performance and behavior.

We obtain data from China Education Panel Survey (CEPS), which is the first large-scale,
nationwide, and longitudinal survey dataset hosted by the National Survey Research Center (NSRC)
at Renmin University of China. So far, available data covers two waves in CEPS. In Wave I, CEPS
surveys 19,487 students from both Grade 7 and Grade 9 in 438 classrooms of 112 schools in 28
county-level units in mainland China in the 2013-2014 academic year. The survey contains 5
different questionnaires regarding topics about the students, parents, head teacher, subject teacher,
and school administrators. In Wave II, CEPS conducts a follow-up survey® for 10,279 students
in Grade 8 in the 2014-2015 academic year, which was Grade 7 in Wave I'°. The response rate is
91.9%. The missing observations are due to reasons such as transferring to another school, dropping
out, long-term sick leave, etc. Our targets are the 9,449 students who appear in both Wave 1 and
Wave II.

In this application, “group” refers to a grade level (Grade 8) in the same school as in Lin
(2010). However, instead of considering friendship networks, we construct networks based on class
assignment for two reasons. First, we are unable to identify a student’s peers as her friends since
the CEPS dataset only contains the number of a student’s best friends and the conditions, e.g., sex,
residence status, whether in the same school/class or not, of up to 5 best friends without providing
their names/ID information for matching. Second, due to the fact that generally students will be in
the same class during the 3-year junior high school stage, their education outcomes might be more

influenced by classmates rather than by their friends. In order to mitigate endogenous network

8Various methods for assigning students to classrooms are implemented in China. Nonrandom assignments can be
based on students’ entrance exam scores, residency, etc. To ensure equal and fair opportunities for all students during
their compulsory education years, randomized assignments are heavily promoted by the Ministry of Education, which
can rely on computer program that incorporate desired multidimensional information or drawing lots to determine
students’ placement.

9Follow-up surveys are annual as the sample adolescents matriculate throughout the junior-high stage and in the
1st, 3rd, 7th, 8th, 17th and 27th year after they graduate from junior-high. CEPS will last more than 30 years,
during which a new cohort of 7th graders will be started in a 10-year interval.

10There are 471 newcomers in Wave II, but we exclude them since we examine the peer effects of classmates on
the relative change/progress of academic outcomes as students proceed from Grade 7 to Grade 8.
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formation and potential selection problem, we focus on schools that use random assignments of
students to classrooms, which are determined by the similar criteria in Gong et al. (2018)!l. We
then further drop observations with at least one missing midterm exam score for the three core
subjects, and the students who choose to transfer to other classes. The remaining sample consists
of 3,944 students across 97 classrooms in 56 schools. On average, there are 41 students in each class
with a minimum of 14, a maximum of 74 and a standard deviation 13.02. 15 schools have only one
classroom, and 41 schools have two classrooms included in the sample.

Table 15 displays our variable settings. The heterogeneous source for networks in this study is
students’ gender, which is excluded from students’ characteristics in order to avoid multicollinear-
ity. Outcome variables are students’ academic performance, which are measured by the Fall 2014
midterm scores of Chinese, Mathematics, English, and the total score by summing up the scores
of the three core subjects, as the cohort goes from Grade 7 to Grade 8 and stays in the same
classroom for more than one year. The raw data of scores for the 2014-2015 academic year has been
standardized for all classes within the same school with mean 70 and standard deviation 10 to have
comparable results. The variables of interest are students’ characteristics, such as whether they are
the only child, relative age (compared with the median level), ethnicity (whether belong to the Han
nationality or not), local residency status, whether they attended kindergarten, and their parents’
education levels. Those pre-determined variables barely change and are also used in Gong et al.
(2018) and Gong et al. (2019)!2. Note that family income information, which might be an impor-
tant factor affecting students’ academic achievement, is not available in the CEPS dataset. But
parents’ education levels might capture most, if not all, of the effects of family income. The dataset
also contains head teachers’ information, such as their gender, teaching experience and whether
they are one of the core subject teachers, in both 2013-2014 and 2014-2015 academic years. The
2014 midterm exams usually occur in October, since class begins in September, we choose head
teachers’ characteristics from 2013-2014 academic year because they might have more impact on
the academic outcomes of the cohort as students have interactions with their head teachers for a
longer time period. We exclude school level information, such as school quality and teacher/student
ratio, due to our control of group fixed effects.

The summary statistics for the whole sample are provided in Table 16. In the whole sample, 48%
of the students are female with a standard deviation 0.50. Scores for Chinese, Math and English
have mean around 70 due to standardization and a standard deviation near 10. Average total score
is 74.13 with higher variation. For students’ characteristics, 48% are the only child in their family,
10% are minority students, 77% are local residents based on the Chinese Hukou System and 85%
attended kindergarten. Although our selected sample differs from the one employed in Gong et al.

(2018), the differences in those characteristics are modest, which implies sample selection bias is not

1 The three conditions should be met: (i) the school principal reports that students are randomly assigned to
classrooms; (ii) the school doesn’t rearrange their classes for grade 8; (iii) all head teachers report that students are
not assigned by test scores.

12The only difference is that they also consider whether the students skipped/repeated a grade in primary school.
We find that corresponding data are quite noisy as a student might skip a grade for up to 9 times and repeat a grade
for up to 7 times. Besides, as we show below, relative age is a good approximate for these two variables. Moreover,
some (baseline) pre-noncognitive measures are included in their paper since they consider different outcome variables
which include students’ non-cognitive outcomes.

37



Table 15: Variable Settings

Variables

Settings

Heterogeneous source

students’ gender

“0” for “male student”; “1” for “female student”

Outcome variables

Chinese score
Mathematics score
English score
total score

standardized for all classes within
the same school with mean 70 and
standard deviation 10

Student’s
characteristics

only child in family
relative age

minority
local resident
attend kindergarten

parents’ education

“0” for “no”; “1” for “yes”

4+ month, compared with sample median value
(February, 2001)

“0” for “no”; “1” for “yes”

“0” for “no”; “1” for “yes”

“0” for “no”; “1” for “yes”

“1” for “none”; “2” for “finished elementary
school”; “3” for “junior high school degree”; “4”
for “technical secondary school or technical
school degree”™; “5” for “vocational high school
degree”; “6” for “senior high school degree”; “7”
for “junior college degree”; “8” for “bachelor’s
degree”; “9” for “master’s degree or higher”

Head teacher’s
characteristics

female head teacher
teaching experience

4‘0” for CLnO”; 4417’ fOI_ (Lyesﬂ
year

whether teach Chinese/

R N wn f 113 99, “177 f [43 i
Mathematics/English 0% for "no™ oryes

a concern in this study. The average relative age (month) is 1.29 with a standard deviation 7.29.
Parents’ education level has a mean slightly above 4, which is between “technical secondary school
or technical school degree” and “vocational high school degree”, and standard deviations around 2.
For head teachers’ information, the sample covers 71% female head teachers, 29% head teachers
who teach Chinese, 32% head teachers who teach Math, and 25% head teachers who teach English.
The average teaching experience of head teachers is 14.39 year with a standard deviation 7.89.
Besides, to investigate the gender disparity in the variables, we further decompose our sample
into female and male students subgroups and the corresponding summary statistics are presented
in Table 17. For academic performance, female students outperform male students for the three
core subjects and also the total score, while male students’ scores have large variations than those
of female students. For students’ characteristics, there are more only child and higher relative age
for the male students compared with those of female students, while parents’ education levels are
slightly higher for female students. For head teachers’ characteristics, the difference for females

students and males students are small in terms of sample mean and standard deviations.
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Table 16: Summary Statistics for the Whole Sample
Mean SD  Observations

Female student 48 .50 3,944
A. Outcome Variables:
Chinese Score 70.56  9.55 3,944
Math Score 70.65  9.78 3,944
English Score 70.60 9.74 3,944
Total Score 74.13 16.84 3,944
B. Student’s characteristics:
Only child in family A48 .50 3,944
Relative age (month) 1.29 7.29 3,944
Minority .10 .30 3,931
Local resident (Hukou System) 7 42 3,944
Attend kindergarten .85 .36 3,906
Father’s Education 441 2.06 3,943
Mother’s Education 4.09 2.46 3,943
C. Head teacher’ characteristics:
Female head teacher 71 A5 3,944
Teaching experience of head teacher (year) 14.39  7.89 3,944
Chinese head teacher .29 21 3,944
Math head teacher .32 .22 3,944
English head teacher .25 .19 3,944

Table 17: Summary Statistics for Female and Male Students Subgroups
Female Male
Mean SD  Mean SD

A. Outcome Variables:

Chinese Score 73.44 7.68 67.93 10.24
Math Score 71.43 9.35 70.00 10.11
English Score 73.17 875 68.22 995
Total Score 76.72 16.31 71.68 16.97
B. Student’s characteristics:
Only child in family 48 .50 .55 .50
Relative age (month) 60 710 188 741
Minority 10 .30 .09 .29
Local resident (Hukou System) 78 41 .76 43
Attend kindergarten .85 .36 .84 .36
Father’s Education 4.48 2.08 4.35 2.04
Mother’s Education 4.11 2.03 4.09 2.06
C. Head teacher’s characteristics:
Female head teacher .72 .45 .70 .46
Teaching experience of head teacher (year) 14.55 ~ 7.86 14.23  7.93
Chinese head teacher .30 .46 .29 .45
Math head teacher .32 A7 .32 A7
English head teacher .26 44 .25 A3

Sample Size: 3893, including 1890 females and 2003 males'®

5.2 Empirical Strategy
5.2.1 Specification 1: Single Network

To estimate the heterogeneous peer and contextual effects for male and female students based on

the single network constructed by classmates, tlr{?gfollowing model can be used:



yi= Y. deidgloic, + Y dgiB g+ 1B+t Bt g, (30)
ge{F,M} ge{F,M}

where ¢; and s; denote the class and school identity associated with individual i. y; is individual
i’s academic achievement showed in Table 16 Section A, including midterm scores of Chinese,
Mathematics, English and the total score. dp; and dp; are dummy variables for female and
male students, so for each individual i, dp; + dar; = 1. §_i, is the average score of individual
i’s classmates excluding her/him-self. x;CL include pre-determined characteristics of individual 7
showed in Table 16 Section B. ELZ-’C include the average characteristics of individual i’s classmates
excluding her/him-self. t;i contain the characteristics of the head teacher of the class ¢;, which is
showed in Table 16 Section C. ay, captures the effects of common variables, either observable or
more commonly unobservable, which are identical for all the students in the same grade of the same
school. wu; is the residual term. Then, in this model, {\r, Apr} and {v@,var} capture the peer and

contextual effects for students of different genders.
Denote Y, = (y1,-+ . yn) » Hp = diag{dp1,....dpn}, Hy = diag{da,... dan}s Xn =
(1, ,xn)l, Tn = (tey, - ,tcn)/, Up = (ug,--- ,un),, and define hy as the dummy variable for

each school s, then we can rewrite the model into the following vector form:

S

Yn = Z )\gHanYn + Z HanXn’Yg + Xnﬁl + Tn62 + Z ashs + Un (31)
ge{F,M} ge{F,M} s=1

where n is the total number of observations and S is the total number of schools. h; is the school

dummy variable for school s. W,, is the row normalized n X n matrix with each element

(el =1) ei=¢
0 C; #Cj

Wijn =

which defines the social network in the same classroom. |¢;| is the total number of students in class
¢;. The parameters of interest are 6y = (Apo, Aar.0, V.05 V01,0, B1.05 B2.0,02)". By QML method

developed in Section 2.3, we can estimate this model.

5.2.2 Specification 2: Multiple Networks

In the study of heterogeneous peer/contextual effects with gender being the heterogeneity source in
student academic achievement, it would be more interesting to separately identify both the within-
gender peer/contextual effects and the cross-gender peer/contextual effects for female students and
male students respectively, and examine their heterogeneous interaction patterns. The empirical

specification for this purpose can be

Yi = Z Z dgviAgvpg_iJ)vci + Z Z dgﬁjl—i,p,cir}/g,p

ge{F,M} pe{F,M} ge{F,M} pe{F,M} (32)

+ xif1 +t, B2 + o, +u
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where y;, x;, tc,

7

and o, are the same as the single network setting. d,; is the dummy variable

) average score of female classmates if p = F
for student ith gender, dr; +dpms = 1. Y—ipe, =
average score of male classmates if p=M

average characteristics of female classmates if p=F
and T_; p e, = . Therefore, {A\p r, Ansas}
average characteristics of male classmates if p=M

and {vr r,vam,m} capture the within-gender peer and contextual effects, while {A\as,r, Ap,as} and
{vm,F,vF,Mm} capture cross-gender peer and contextual effects.

In matrix/vector form, the model can be rewritten as

Yo = Z Z AgpHgWpn¥Yn + Z Z H W, n XnYp,g

ge{F,M} pe{F,M} ge{F,M} pe{F,M}
s (33)
+ Xnﬂl + TnﬂQ + Z ashs + up

s=1

Wgn and Wiy, are row normalized n X n matrix with each element

V(Fl=1) c=g¢ 1/ (|Me,

Wij Fn = and Wi M =

0 Ci#cj 0 C,’?éCj

—1) Ci = Cj

where |F, is the total number of male

is the total number of female students in class ¢;, and |M,,

students in class c¢;.

5.2.3 The control of school-grade fixed effects

Here some people may wonder why we control the school-grade level instead of classroom level
fixed effects. On one hand, there are some technical limitations to include smaller group level fixed
effects. Since we include the characteristics of head teachers which should be identical for students
in the same class, those variables are perfectly multi-collinear with classroom level fixed effects
obviously. Thus, we are not able to separately identify the potential pre-determined classroom
selection effect and the effect from the head teachers. Similarly, gender-classroom or gender-school
level fixed effects can not be included in the model. Since they are perfectly co-linear with the
female dummy, they can not be separately identified from the gender effect. Thus, the smallest
unit of group which we can control for fixed effects is the school assignment.

On the other hand, it is due to our sample features. In fact, as we described in Section 5.1,
for each school, the classes are randomly assigned, there is no need to control classroom level fixed
effects. But at school level, since we have both public schools and private schools included, they
might have different selection standards for students. Even if they did not, the different levels of
tuition fees would potentially differentiate the students. Besides, different regions in China have
different ways to allocate students into junior high schools. For example, in 2013 which is the year
our sampling students entered their junior high schools, the capital city Beijing just allocate the

students into public schools nearby their homes randomly. However, in the same year, Tianjin, which
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is another municipality in China close to Beijing, used application basis just like college admission,
and the schools selected the students based on their performance in elementary schools, their scores
in junior high school entrance exams hold by local governments, or even private tests/interviews for
top schools. Thus, the school allocation in our sample is definitely non-random. Considering both

technical and sample reasons, controlling the school-grade level fixed effects is our best choice.

5.3 Estimation Results

Table 18a and 18b summarize our estimation results with the single network constructed by class-
mates, and those with multiple networks constructed by gender subgroups in a class are reported
from Table 19a to Table 19e. First, the log-likelihood values exhibit slight improvement for all the
four models with multiple networks specification (Table 19¢) than those with single network (Table
18b). By the Efron’s R?, the models using total score as the dependent variable provides the best
model fit. It might arise from the fact that in China, for junior high school students, the goal of
study is to maximize one’s total score rather than the test score of a specific subject. Students
might strategically make some trade-offs for their study time among the three score subjects. As
a result, the estimation results for the total score columns might be more meaningful as it’s less
noisy, while the results in other columns can be used as comparisons.

Second, we consider the estimation results for peer effects (Table 18a and Table 19a-19d).
Under the single network specification, the gender disparity in peer effects from classmates are
modest. 1 standard deviation increase in classmates’ average achievement raises a male student’s
total score by 6.532 points and that of a female student by 5.456 point. However, we find strong
evidence for heterogeneous gender peer effects from female and male classmates as significant gender
disparities are detected under the multiple networks specification. For all the subjects, female
students’ performances are more subject to both female and male peers’ influences. The finding
is consistent with some previous studies, for instance, Yakusheva et al. (2014) and Trogdon et al.
(2008) find that females are subject to peer influence in weight gain. Besides, female peers’ average
achievement contribute more to a student’s Chinese and total test scores, while for Mathematics,
male peers’ average achievement have more impacts. For the English subject, the impacts of female
and male classmates are not significantly statistically different from each other. ' If we focus
on peer effect estimates of the total score, the within-gender effects are stronger than cross-gender
effects for female students, while for male students, the opposite is true. 1 standard deviation
increase in female classmates’ average achievement lead to 10.838 points increment in a female
student’s total score, and raises a male student’s total score by 8.245 points. For the 1 standard
deviation increase in male classmates’ average achievement, a female student’s total score can be
raised by 7.411 points and that of a male student is increased by 5.853. These results show that
the social multiplier effects exist in Chinese junior high school learning and the magnitudes differ
by heterogeneous social interaction patterns among gender subgroups.

Third, we consider the impacts of individual characteristics (Table 18b and Table 19¢). The

14The estimated peer effect coefficients from the impacts of female classmates on females and males are A F,F = .5140
and 5\M,F = .4489, and those from male classmates on females and males are /A\F’M = .7130 and /A\M7M = .4762, by
simple test statistics, we can not reject the null hypothesis that Hy : 5\F,F,0 = S\F,M,O’ and 5\M,F,O = 5\M,M,0~
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estimates are robust under both specifications with same signs and close magnitudes. We do
not find significant impacts of minority students and students who are local residents on the test
scores. We detect that being the only child in the family slightly raises a student’s test scores,
as depicted in previous literature such as Poston and Falbo (1990), Falbo and Poston (1993),
Li and Zhang (2017)'°. We show that having attended kindergarten helps to increase students’
academic achievement, which offers the evidence for the importance of early childhood education.'®
Furthermore, a student’s test scores for all subjects are positively correlated with his/her parents’
education levels, similar results can be found in Davis-Kean (2005) and Dickson (2016).7

We capture a counterintuitive result that an older student performs a little bit worse in all
subjects, which seems to violate the famous “relative age effect (RAE)”. However, RAE are more
commonly seen in the sports field, for instance, Musch and Grondin (2001), Helsen et al. (2005), and
Delorme et. al. (2010), whereas we focus on the academic outcomes. Moreover, since a student’s
relative age is the + month(s) compared with the sample median value of students’ date of birth
(February, 2001) by our construction, due to the fact that there is a cutoff date regulating the
precise age for entry into primary school in China and that our sample has excluded students who
have skipped or repeated grades in the junior high school, relative age is a good approximate for
whether a student has repeated or skipped grades in primary school because the data for repeated
or skipped grades is quite noisy and with some missing values due to students’ self-report in the
questionnaire. To see this, we decompose our sample into three subgroups: the delayed range group
(19.16%, might have repeated grades in primary school) that is at least 5 months older than the
sample median, the regular range group (71.10%) that is at most (or exactly) 5 months older and at
least (or exactly) 6 months younger than the sample median value, the earlier range group (9.74%,
might have skipped grades in primary school) that is at least 6 months younger than the sample
median. As in Table 20a and Table 20b, the regular range group has lower correlation coefficients
with all the subjects, while the other two groups have higher negative correlations. The regular
range group has test scores around the sample averages, but the delayed range group has lower
average scores, and the earlier range group has the opposite outcomes. Based on these findings, we
might safely conjecture that the extreme performance of the delayed range and the earlier range
groups has dragged the sign of the estimated coefficients to the slightly negative side.

Fourth, for contextual effects, some variables show significant impact. Under the single network
specification (Table 18a), the contextual variables that show negative effects include relative age
)18

(for both female and male students)!®, minority (for a female student’s Chinese score)!?, and

15Poston and Falbo (1990) find that those without siblings score higher academically than those with siblings.
Falbo and Poston (1993) show that onlies are more likely to outscore others in verbal tests in terms of academics.
Li and Zhang (2017) provide new evidence of the causal effect of child quantity on child quality.

160ne related finding in Chetty et al. (2011) is that kindergarten test scores are highly correlated with outcomes
such as later earnings and college attendance.

17Parents’ years of schooling was found to be an important socioeconomic factor for students’ academic outcomes
(Davis-Kean, 2005) and increasing parental education has a positive causal effect on children’s outcomes (Dickson,
2016).

18Being in a class with older classmates decreases a student’s Math and total scores and reduces the English score
if the student is male. In other words, given a student’s age ranking in the sample, being with higher percentage
of older classmates puts the student at an unfavorable academic status. The finding is consistent with Bedard and
Dhuey (2006), which state that youngest members of each cohort score lower than the oldest members in grade 4
and 8, although they didn’t formally use “contextual effects” to describe their finding.

19There might be some trade-off effects for the time that a female student can spend on using minority language
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attended kindergarten (for a male student)?°. On the other hand, having classmates who are only
child in family will help improve a female student’s total score, and having classmates who are
local resident will raise a male students’ Math score, having classmates who have mothers with
higher education level will improve a male student’s Chinese score, which is a similar result as
in Chung and Zou (2020) and Bifulco et al. (2011)2'. Under the multiple networks specification
(Table 19a-19d), relative age, local resident, attended kindergarten, and parents’ education levels
show some significant impacts, but whether the impacts are positive or negative, and which ones
are stronger between the within-gender effects and cross-gender effects vary across different gender
groups and depend on the subjects. Two contextual variables that are worth noting are relative age
and mother’s education. Relative age demonstrates both competitive effects and complementary
effects for a female student, i.e., having older male classmates will deteriorate a female student’s
Chinese and Math scores, while having older female classmates will improve a female student’s
English and total scores. By the contextual effect of mother’s education, we detect the specific
channel about how higher classmates’ maternal education raises a students’ test score (Chung and
Zou, 2020), i.e., a female student’s Mathematics and total test scores are positively affected when
her male classmates have higher educated mothers.

Last, the roles of head teachers’ characteristics are investigated. Under the single network
specification (Table 18b), we detect that having a female head teacher can raise a student’s Chinese
and total test score.?? Additionally, similar with Rockoff (2004) and Ladd and Sorensen (2017)23,
we capture significant positive influences of an experienced head teacher on a student’s Math score,
but evidence about its impact on Chinese, English and the total scores are not found. Then, when a
head teacher teaches Math or English, a student’s corresponding test scores rise.2* However, under
the multiple networks specification (Table 19e), the effects of head teachers’ characteristics are not
significant. The impact of a head teacher on a student’s academic achievement might be entangled
with interaction patterns of within and across gender subgroups in the same class, but under current
model design, we are unable to identify the specific channel, which might be an interesting topic

for future research.

and learning Chinese when her classmates are minority.

20 Although early childhood education benefits later cognitive outcomes, it worsens a male student’ total score
when surrounding peers also have this advantage.

21Chung and Zou (2020) find that higher classmates’ maternal education raises students test score, and Bifulco et
al. (2011) states that increases in the percent of classmates with college-educated mothers decreases the likelihood
of dropping out and increases the likelihood of attending college.

22A finding that is somewhat consistent with Gong et al. (2018), which show that the gender of teacher matters,
i.e., having a female teacher raises girls’ test scores and improves their mental status and social acclimation relative
to those of boys.

23Rockoff (2004) presents evidence that teaching experience significantly raises student test scores. Ladd and
Sorensen (2017) find large returns to experience for middle school teachers in the form of higher test scores.

24The possible explanation might be that a Math or English subject teacher, who is also the head teacher, is more
likely to provide positive feedback to boost students’ confidence in studying and enforces students’ beliefs about the
importance of the corresponding subject.
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Table 18b: Results for Students and Head Teachers’ Characteristics (Single Network)

Chinese ~ Mathematics  English Total
Students’ Characteristics:
L . 6831%* BATE* 5880* T883*
Only child in family - \3557) (.3628) (.3470) (.3631)
Relative age S0653%HF  _137TRRR 1908 _1411%%
(.0229) (.0247) (.0234) (.0246)
Minotity -.1849 -9118 -.3147 -7075
(.6976) (.7451) (.7118) (.7487)
Local resident -.1869 0863 -.1700 -.0376
(.3974) (.4225) (.4056) (.4259)
. L7546%FF  1.4655%%%  1.5599%%* 1.7002%%
Attend kindergarten =/ 1) (.4400) (.4207) (.4409)
, . 2002%* 2589%* 4361 3539%F
Father’s Education 993, (.1063) (.1015) (.1064)
, . 3528%% 1811% 2539% 2700%
Mother’s Education = 100y (.1091) (.1041) (.1094)
Head teachers’ Characteristics:
Fomale 1.1822%* 9150 11980 1.0761*
(.5978) (.6901) (.7080) (.6367)
Teaching experience 19 1207 -.0004 0577
(.0362) (.0408) (.0376) (.0397)
Tench this conse -7817 1.5422%%  2.8613%%* 7996
(.5160) (.5447) (.8189) (.7755)
Log Likelihood -13982 -14243 —-14059 -14251
Efron’s R 1467 0788 1492 6885
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Table 19a: Results for Peer and Contextual Effects for Chinese (Multiple Networks)

Female Classmates Male Classmates

Female Male Female Male
beer Effects TT34FFE B315FRE 5 onREk 41125
(.0854)  (.0666)  (.1088) (.1008)

Contexual Effects:

e 2005 -7255  -2.4732 -3.9304
Only child in family o 1705y (9.2150)  (3.6477) (3.5172)

Relative as 1823 -.0467  -.3581% 1224
ve ag (1702)  (.1675)  (.1962) (.1901)
Minorit 0.2257  -.9966  -8.7721 2.0019
Y (5.8687)  (5.9554)  (6.7361) (6.4996)

Local resident 8808 -1.8995  -3.8662 3.3407
(2.6673)  (2.6811)  (2.8180) (2.6604)

. -3.0196  3.9821  -6.3429* 1.3857
Attend kindergarten 3 ca19y (35060)  (3.6933) (3.6009)

: . 1306 1437 -1.1901 2700
Father’s Education — g150)  (8456)  (.8486) (.8292)

: . 6086 -1.1002  .6998 4899
Mother’s Education 56ty (1.0023)  (.9991) (.9620)

Sample Size: 3893, including 1890 females and 2003 males
Significance Level: * <10%, **< 5%, *** <1%

Table 19b: Results for Peer and Contextual Effects for Mathematics (Multiple Networks)

Female Classmates Male Classmates

Female Male Female Male
Peor Effocts 3089%FF  2482FFF  pGH2 AG83FF
(.0730)  (.0839)  (.0988) (.0967)

Contexual Effects:

Only child in family L7072 28156 -4.4454 1.5916
(2.4011)  (2.4220)  (3.9466) (3.7976)

Relative age 2740 -.0730  -.4849%* 0683
(.1806)  (.1790)  (.2123) (.2015)

Minority 42831  -1.2726  -7.5487 7558
(6.1626)  (6.2631)  (7.1075) (6.8799)

Local resident 41093 -2.2392  -5.5803* 5.1577*
(2.8141)  (2.8532)  (3.0723) (2.8911)

. “1.0687  3.3024  -4.7658 1.1933
Attend kindergarten 3 90901 (37946)  (3.8439) (3.5472)

, . 5004 1.3676  -1.4728 2082
Father’s Education  gean (9075)  (.9237) (.8807)
, . 4686 -.6195  2.2530% -.9135
Mother’s Education | 4004y (1.0587)  (1.0950) (1.0423)

Sample Size: 3893, including 1890 females and 2003 males
Significance Level: * <10%, **< 5%, *** <1%
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Table 19¢: Results for Peer and Contextual Effects for English (Multiple Networks)

Female Classmates Male Classmates

Female Male Female Male

Peor Effect GIA0™FF  4480%F 71307 4762
(1197)  (1781)  (.1606) (.3031)

Contexual Effects:

Only child in family L7173 12912 -6.3287 -3.7488
(3.4419)  (3.8040)  (3.9272) (3.5656)

Relative age 3245%  -.0599  -.2713 2511
((1732)  (.1688)  (.2212) (.2531)
Minority 6.0672  5.8218  -3.8457 -1.1949
(6.2754)  (6.3311)  (7.2545) (6.8532)

Local resident 3.8016  -1.8771 -8.1032** 3.7163
(2.6681)  (2.8193)  (2.9436) (3.0092)

. 75587 5.6609 6911 1.1286
Attend kindergarten g 5176y (37010)  (4.5833) (5.1422)
, . 11618 5321 -1.2378 7179
Father’s Bducation 101)(1.0908)  (.9188) (1.0457)
, . 0599 -.8382  1.2656 -.4033
Mother’s Education g700)  (1.0413)  (1.0477) (1.1543)

Sample Size: 3893, including 1890 females and 2003 males
Significance Level: * <10%, **< 5%, *** <1%

Table 19d: Results for Peer and Contextual Effects for Total Score (Multiple Networks)

Female Classmates Male Classmates

Female Male Female Male
Peer Effects .6645%**F  5O55F*E 4367FF* .3449***
(.0854)  (.0731)  (.1107) (.0949)

Contexual Effects:

Only child in family 7100 -2.1874 -5.1136 2.3158
(2.3602)  (2.3880)  (4.1073) (3.9398)

Relative age .4468** -.2151 -.3330 .0388
(.1872)  (.1848)  (.2096) (.2001)

Minority 4.2213 -4.3866 -11.9775 4.4193
(6.2655)  (6.3663)  (7.5096) (7.2233)
Local resident 4.6416 -5.5168*  -5.4366* 7.4535%*
(2.9250)  (2.9339)  (3.0552) (2.8492)

. -1.8706 1.2642 -2.2291 -.5564
Attend kindergarten 3 o767y (3.9901)  (3.8645) (3.6747)

, . -.7261 7579 -1.6946* .3593
Father’s Education — gg)0)  (9119)  (.9415) (.9040)
, . -.3528 -.5139 1.8081* -.5879
Mother’s Education 599y (1.1102)  (1.0876) (1.0458)

Sample Size: 3893, including 1890 females and 2003 males
Significance Level: * <10%, **< 5%, *** <1%
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Table 19e: Results for Students and Head Teachers’ Characteristics (Multiple Networks)

Chinese  Mathematics  English Total
Students’ Characteristics:
a1 . .5946* STT28¥** .5065 .8019**
Only child in family 5,56 (.3702) (.3534) (.3762)
Relative age -.0627%** - 1142%* -.0993*** -.1201%%*
(.0233) (.0247) (.0236) (.0251)
Minority .2142 -.7511 -.0197 -.3891
(.7077) (.7495) (.7102) (.7640)
Local resident -.3122 -.0315 -.1521 -.0121
(.4046) (.4291) (.4016) (.4364)
. 1.6937*** 1.6219%** 1.6241%%%* 1.8566%**
Attend kindergarten ) o, (.4425) (.4256) (.4499)
, . .2367** 2782%* A4416%%* 3TETH**
Fathers Education 4 54 (.1071) (.1034) (.1088)
, . 2083 *** 1610 .2304** .2504**
Mother’s Education = )} (.1105) (.1042) (.1124)
Head teachers’ Characteristics:
Female -.1180 A767 -.3119 2077
(.6354) (.7766) (1.4381) (.6936)
Teaching experience .0435 0477 .0232 .0411
(.0414) (.0439) (.0484) (.0451)
Teach this course .0803 .3344 -.4607 .0652
(.5618) (.5857) (1.8734) (.8861)
Log Likelihood -13955 -14215 -14041 -14233
Efron’s R? 1251 .0739 .1252 6771

Table 20a: Correlation Coeflicients Between Grades and Relative Ages

Delayed Range

Regular Range

Earlier Range

All Range (Relative Age>5) (-6<Relative Age<5) (Relative Age<-6)
Chinese -.0885 -.0224 .0013 -.0603
Mathematics -.0886 -.0200 -.0333 -.1298
English -.1124 -.0826 -.0150 -.0764
Total -.1990 -.0576 -.0275 -.0766
# observations 3893 746 2768 379

Table 20b: Average Grades for Different Age Ranges

Delayed Range Regular Range

Earlier Range

All Range (Relative Age>5) (-6<Relative Age<5) (Relative Age<-6)
Chinese 70.6049 68.8624 70.8442 72.2879
Mathematics 70.6940 69.3231 70.8073 72.5650
English 70.6258 68.7782 70.8314 72.7606
Total 74.1286 66.0787 75.9426 76.7250
# observations 3893 746 2768 379
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6

Conclusion

This paper considers higher-order spatial autoregressive models with group fixed effects to confront

some conceptual problems in social interaction estimation. The heterogeneous peer and contextual

effects can be separately identified and the peer effects can be disentangled from other confounding

effects captured by the group fixed effects term. We show consistency and asymptotic normality

of the proposed QMLE and verify its finite sample performance by Monte Carlo simulations. We

detect significant gender disparities in peer effects from gender subgroups in a classroom for Chinese

junior high school students, which provides justification for some policy related interventions aimed

at improving social welfare in school learning. As in Lin (2010), the limitation of the group fixed

effect model is that it can not deal with possible unobservable factors in common within groups.
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